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M A T E R I A L S  S C I E N C E

Autonomous materials synthesis via hierarchical active 
learning of nonequilibrium phase diagrams
Sebastian Ament1†, Maximilian Amsler2,3*†, Duncan R. Sutherland2, Ming-Chiang Chang2, 
Dan Guevarra4, Aine B. Connolly2, John M. Gregoire4, Michael O. Thompson2,  
Carla P. Gomes1*, R. Bruce van Dover2

Autonomous experimentation enabled by artificial intelligence offers a new paradigm for accelerating scientific 
discovery. Nonequilibrium materials synthesis is emblematic of complex, resource-intensive experimentation 
whose acceleration would be a watershed for materials discovery. We demonstrate accelerated exploration of 
metastable materials through hierarchical autonomous experimentation governed by the Scientific Autonomous 
Reasoning Agent (SARA). SARA integrates robotic materials synthesis using lateral gradient laser spike annealing 
and optical characterization along with a hierarchy of AI methods to map out processing phase diagrams. Efficient 
exploration of the multidimensional parameter space is achieved with nested active learning cycles built upon 
advanced machine learning models that incorporate the underlying physics of the experiments and end-to-end 
uncertainty quantification. We demonstrate SARA’s performance by autonomously mapping synthesis phase 
boundaries for the Bi2O3 system, leading to orders-of-magnitude acceleration in the establishment of a synthesis 
phase diagram that includes conditions for stabilizing -Bi2O3 at room temperature, a critical development for 
electrochemical technologies.

INTRODUCTION
Artificial intelligence (AI) holds great promise for revolutionizing 
scientific fields as varied as biology (1), chemistry (2), physics (3), 
and economics (4). Much of AI’s impressive recent successes have 
been in data-rich applications: AlphaFold (1), for example, uses a 
library of tens of thousands of existing protein data to build a highly 
successful model for protein folding. In fields that lack comparably 
vast data, however, a great opportunity lies in guiding the explorato-
ry process itself to minimize the number of experiments that are 
required to achieve insights, i.e., active learning (AL) (5), and thereby 
accelerate the pace of scientific discovery (6).

These AI-guided efforts have shown great promise in the design 
of quantum experiments (7), drug development (8), and wind 
turbine control (9) and are of particular importance in materials 
research aimed at designing and optimizing functional materials 
that lie at the core of technological advances. High-throughput 
(HT) experimental synthesis and characterization of materials 
systems through thin-film deposition of inorganic composition 
spreads (10), so-called libraries, present a promising avenue to 
rapidly explore a vast chemical, structural, and property space (11). 
These methods have been well established for comprehensive 
synthesis of composition spaces with two to four components, where 
the resulting tens to thousands of materials can be evaluated via 
automated characterization. While this approach has been quite 
effective for identification of materials with desired properties, the 
opportunity for broader materials exploration to enable new tech-
nologies is highlighted by the limited exploration of synthesis 

conditions to date. The portion of the materials search space that 
has been explored is vanishingly small when considering the dynamic 
range of thermal processing conditions, which are inherent to 
processing-composition-structure-property (PCSP) relationships. 
The breadth of relevant thermal processing conditions makes ex-
haustive sampling untenable, and as HT experiments lower the time 
for an experiment cycle, human intervention in decision-making 
becomes a worsening bottleneck. Therefore, AI and AL are critical 
in both reducing the number of experiments to a more tractable 
scale and accelerating the process of making decisions to match the 
rate of incoming data (12–14).

Recently, HT experimentation and AL techniques have been 
combined in a closed-loop fashion, where an AI instance iteratively 
proposes a sequence of experiments to explore and discover new 
materials. These efforts include identifying phase-change materials 
via Bayesian AL (15), the discovery of NiTi-based shape memory 
alloys with low thermal hysteresis (16), the synthesis of BaTiO3-
based piezoelectrics with large electrostrain (17), the selective growth 
of carbon nanotubes (18,19), the search for perovskite-type materials 
for photovoltaic applications (20) and inorganic quantum dots (21), 
maximizing hole mobility of organic solar cells (22), and accelerat-
ing toughness optimization in additive manufacturing (23).

Despite this progress, the current state of the art exhibits consider-
able limitations. Chiefly, most attempts at closed-loop cycles still 
rely heavily on human intervention, preventing them from reaching 
true autonomy in materials discovery. Furthermore, although AL 
guidance has recently been deployed to great effect for discovery of 
optical phase-change thin-film materials (15), the search space was 
limited to presynthesized compositions using a single processing 
condition. The time and temperature scales relevant to nonequilibrium 
thermal processing of solid-state inorganic materials pose substan-
tial problems for incorporating synthesis in an autonomous loop, 
although the utility of spanning synthesis and characterization in an 
AL framework has been demonstrated by several recent autonomous 
workflows for chemical synthesis (22, 24–26). The complexity and 
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the degrees of freedom of the PCSP space are particularly challenging 
to incorporate in autonomous experimentation when considering 
metastable materials that form far from equilibrium at different, 
often unpredictable processing conditions (27,28). Commonly 
deployed off-the-shelf AL models are often not sufficient for achieving 
highly efficient learning and are frequently outperformed by random 
search with twice the number of samples (29), a problem that is 
exacerbated with increased dimensionality of the search space (30).

Expert human scientists navigate complex search spaces by 
incorporating their prior knowledge, such as physics-based models 
that underlie the acquired data. Incorporating such knowledge in 
AL often requires the development of new AI methods. Lastly, ex-
ploration via AL critically relies on uncertainty quantification in the 
not-yet-sampled regions of parameter space, which, for complex 
experimental workflows, requires error propagation. Arguably, the 
most immediate obstacle to accelerating experimental exploration 
via AL lies in the dual challenges of developing noise models for 
each type of experiment and integrating them into a computational 
framework for end-to-end uncertainty quantification. In aggregate, 
these challenges motivate the establishment of a framework that 
integrates AI methods at multiple scales to perform scientifically 
meaningful interpretation, modeling, and uncertainty quantifica-
tion of multiple streams of incoming data.

Our vision of the Scientific Autonomous Reasoning Agent (SARA) 
(31) is to develop a fully autonomous HT materials discovery and 
exploration framework by integrating robotic HT materials synthesis 
(26) with AI instances to accelerate both materials synthesis and 
analysis. In particular, SARA aims to automate the representation, 
characterization, planning, optimization, and learning of materials 
knowledge in a fully integrated manner. To achieve this goal, we 
envision the deployment of agents, which individually specialize on 
specific subtasks but closely interact with each other to accelerate 
the discovery efforts. These agents include, but are not limited to, 
synthesis and probing robotics to conduct experiments and highly 
optimized, physics-based AI models that evaluate currently avail-
able data with their associated uncertainties and that drive AI-guided 
discovery.

In this work, we take strides toward realizing this vision and 
present a fully integrated, autonomous framework that iteratively 
maps out the synthesis phase boundaries of metastable compounds 
in a closed-loop fashion. To this end, we incorporate a system of 
nested (32) cycles harnessed by SARA’s specialized AI agents to 
synthesize and explore thin-film libraries with lateral gradient laser 
spike annealing (lg-LSA) (33): An internal (highest frequency) 
autonomous loop iteratively proposes optimized property measure-
ments of a given lg-LSA stripe using a hierarchy of optical charac-
terization techniques, while an external autonomous loop proposes 
and executes the next lg-LSA synthesis via a model that aggregates 
knowledge obtained by inner loop iterations. This architecture can 
be readily expanded and nested into higher-level loops that, e.g., 
optimize thin-film deposition, materials systems, and quantum 
materials computation.

SARA’s nested synthesis, microscopy imaging, and reflectance 
spectroscopy loops driven by the specialized AIs with AL reflect the 
hierarchical nature of scientific discovery. A primary goal of studying 
PCSP relationships is the enumeration of all possible syntheses that 
yield unique materials, a knowledge base that must be built from 
synthesis phase diagrams over a broad range of synthesis techniques, 
multiple parameter spaces defined within each technique, and 

many experimental campaigns to map synthesis phase diagrams in 
those spaces. Coordination among the levels of hierarchy is critical 
for maximizing high-level knowledge generation from low-level 
experiments, which guides our development of nested AL algorithms 
that seamlessly incorporate task coordination and uncertainty 
propagation. This framework is extensible with respect to incorpo-
ration of additional levels of hierarchy and/or expansion of techniques, 
such as additional property measurements and on-the-fly quantum 
mechanical calculations (34, 35), that enrich the knowledge within 
a given level of hierarchy. Networking of capabilities and knowledge 
sources elevates the use of AI and AL from process optimization to 
accelerated scientific discovery, a grand vision of AI-assisted science.

RESULTS
Our goal is to explore synthesis phase diagrams, especially the 
relatively unexplored ultrafast-annealing region where metastable 
polymorphs of metal oxides are more likely to form. These metastable 
oxide materials often exhibit improved properties over thermo-
dynamic ambient ground states and are relevant for countless indus-
trial applications. The cubic high-temperature polymorph of ZrO2, 
for example, is frequently used as a thermal coating material (36–38) 
because of its low thermal conductivity, while the anatase phase of 
TiO2 has attracted interest as a photocatalytic material (39–41). 
These are only two of the most prominent examples of materials 
systems where metastable phases outperform their respective 
equilibrium counterparts.

Here, we study the Bi-O system, which exhibits a rich phase 
diagram with dozens of experimentally observed polymorphs. In 
particular, we focus on the Bi2O3 composition, for which five dis-
tinct crystalline phases are known (42, 43). The monoclinic -Bi2O3 
is the thermodynamic ground state at room temperature, while four 
high-temperature phases have been reported: tetragonal -Bi2O3, 
body-centered cubic -Bi2O3, cubic -Bi2O3, and orthorhombic 
ϵ-Bi2O3. The metastable  phase has attracted interest as a solid 
oxide electrolyte in fuel cells (44): Because of its defective fluorite-
type crystal structure with a high concentration of oxygen vacancies, 
-Bi2O3 has the highest oxygen ion conductivity of any solid oxide 
known to date. Unfortunately, it exhibits only a narrow thermody-
namic stability window between 727° and 824°C, which has so far 
precluded its use on an industrial scale. Substitution of yttrium or 
rare earth oxides can stabilize -Bi2O3 to room temperature but 
leads to a degraded ion conductivity. Hence, efforts have been 
aimed at finding routes to retain phase-pure -Bi2O3 to ambient 
conditions (45).

Our samples are deposited as amorphous thin films by reactive 
sputtering on a silicon substrate. For other materials systems, com-
position spreads can be similarly deposited, allowing the mapping 
of a composition gradient c(x) to the location x on the substrate. We 
process the thin-film libraries using lg-LSA to form and kinetically 
trap metastable phases during the quench to ambient conditions. In 
contrast to conventional methods for annealing thin-film samples, 
such as hot plate, furnace, and rapid thermal annealing (46), lg-LSA 
allows a controlled and rapid thermal processing over a wide range 
of conditions in a spatially confined region of less than 1 mm, with 
quench rates of 104 to 107 K/s and peak temperatures Tp up to 
1400°C (limited by melt of the silicon substrates). Scanning a laser 
beam with a bi-Gaussian–like power profile (see the backdrop in 
the left panel of Fig. 1) over the film allows a single lg-LSA stripe to 
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produce a spatially inhomogeneous thermal profile TTp, (x) (where 
x runs across the stripe). The duration of heating is characterized by 
a dwell time  defined by the ratio of the laser full width at half 
maximum (FWHM) divided by the scan velocity of the laser (typical 
dwells range from 100 to 10,000 s). Hence, at a given dwell time , a 
single lg-LSA experiment produces a continuous range of tempera-
ture conditions wherein phase transitions, including formation of 
the sought metastable phases, need to be detected with a speed and 
level of automation commensurate with this robotic synthesis 
procedure to fully capitalize and elevate high-throughput synthesis 
to high-throughput discovery of phase boundaries.

To reduce both computational and experimental cost, we need 
to autonomously map out the processing phase space {x, , Tp} with 
as few synthesis experiments and property measurements as possi-
ble. Because the lg-LSA is an irreversible method, a specific position 
x [and potentially its associated composition c(x) in the presence of 
a composition gradient] can only be annealed once, further empha-
sizing the need for optimizing the selection of the processing condi-
tions. Once an lg-LSA stripe is processed, a conclusive structural 
characterization across the thermal gradient is possible with grazing-
incidence high-intensity x-ray diffraction (XRD) to resolve the 
crystal structure (47). However, access to synchrotron facilities 
capable of producing x-rays with appropriate wavelength, intensity, 
and micrometer-scale spatial resolution comprises an inherently 
limited resource that motivates development of alternative phase 
boundary detection methods. To address this issue, we developed a 
complementary technique based on microscopy imaging and 
optical spectroscopy to rapidly assess phase boundaries. We recently 
demonstrated that structural phase changes are directly associated 
with changes in the optical thin-film properties of transparent films, 
in particular the optical thickness nd (47), where n is the refractive 
index and d is the film thickness. Essentially, the gradients of the 
optical measurements across an lg-LSA stripe provide a means to 

map out phase boundaries without explicit crystallographic phase 
identification, thereby producing an unlabeled processing phase 
diagram without costly XRD experiments.

Here, we put forth how SARA integrates lg-LSA synthesis and 
optical phase boundary detection in a hierarchical autonomous 
workflow by using characterization and synthesis agents, XAI (pro-
nounced chi AI) and ΣAI (pronounced sigma AI), respectively, as 
illustrated in Fig.  1. Starting with an initial processing condition, 
SARA synthesizes an lg-LSA stripe on a thin-film library. Then, 
SARA uses its internal characterization agent XAI to probe the stripe 
using a set of optical techniques: (i) microscopy imaging to rapidly 
inspect the anneal stripe (see the top panel in “Optical characterization” 
in Fig. 1) and (ii) more elaborate, but costly, reflectance measure-
ments (see “Reflectance spectroscopy” in Fig. 1). In particular, XAI 
uses the observed features from the micrograph as prior knowledge 
to guide and acquire an accurate reflectance map with as few mea-
surements as possible. The gradients of the reflectance map are then 
fed into SARA’s synthesis AI agent ΣAI, which incorporates the 
reflectance gradient information of each lg-LSA stripe into a phase 
boundary map as a function of the parameters {x, , T}. The 
high-gradient regions of this map determine the boundaries be-
tween phase fields and produce an unlabeled processing phase 
diagram (see “Phase boundary mapping” in Fig.  1). ΣAI is also 
responsible for proposing the next most promising synthesis condi-
tions to effectively explore the search space. We discuss XAI and ΣAI 
in detail below.

XAI: Accelerating data acquisition and characterization
XAI’s primary task is to construct an accurate reflectance spectros-
copy map r(x, ) of an lg-LSA sample annealed at Tp and  while 
measuring it at as few positions xi across the stripe as possible. 
Because the acquisition time for a single such measurement r(xi,·) 
is around 4.5 s, an exhaustive scan across a stripe of 1.5 mm in 
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Fig. 1. SARA’s closed-loop autonomous materials synthesis and discovery cycle. Starting from a set of initially selected processing conditions, SARA synthesizes an 
lg-LSA stripe on a thin-film library and subsequently sends it to its characterization AI agent, XAI. (Left) Schematic illustration of the lg-LSA/camera setup with the 
bi-Gaussian power profile in the backdrop, laser to the left, camera to the right, and thin-film sample mounted on a stage. Using a hierarchy of characterization 
techniques, XAI analyzes the stripe to determine intricate changes in its optical properties. In particular, XAI first acquires a microscope image to determine the positions 
of likely phase boundaries, which informs the reflectance spectroscopy measurements. XAI’s physics-informed AL model accelerates the spectroscopy acquisition, resulting 
in an accurate gradient model of the lg-LSA stripe. (Middle) Microscope image, reflectance spectroscopy heatmap, and first four Legendre coefficients from the XAI 
representation for a representative lg-LSA stripe. Lastly, the gradients are fed into SARA’s synthesis AI agent, ΣAI, which generates a gradient phase boundary map and 
also proposes the next experimental processing conditions to improve the phase boundary with as few experiments as possible. (Right) Model gradient phase map 
showing high-gradient regions in yellow.
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10−m intervals requires more than 11 min, forming one of the 
main bottlenecks of our HT experimental setup. To accelerate the 
reflectance data acquisition, we propose an AL scheme that takes 
advantage of multimodal measurements and incorporates physical 
structure into a Gaussian process (GP) regression model to yield 
highly optimized data acquisition and analysis.

The overall workflow of the XAI cycle is outlined in Fig. 2A. In a 
first step, SARA captures a microscope image of an lg-LSA stripe to 
analyze the overall condition of the anneal and to extract key features. 
This single RGB (red-green-blue) image of a stripe is inherently 
throughput-matched to the lg-LSA synthesis, producing prior knowl-
edge for the XAI’s AL cycle to accelerate reflectance measurements. 
A representative microscope image is shown in Fig. 2B. These 
micrographs can be used to rapidly assess the conditions and the 
integrity of the anneal. Obvious damage of the thin film such as delami-
nation and scratches or contamination such as dust particles, residual 
lithography artifacts, and dirt can be easily detected, which invalidates 
the lg-LSA stripe and can trigger resynthesis. The incorporation of 
such automated quality control in the autonomous loop alleviates 
responsibility for the XAI loop to effectively respond to invalid data, 
a critical aspect of autonomous workflows for robust operation (13).

SARA proceeds by constructing a stripe-specific GP kernel that 
incorporates the underlying physics of both the lg-LSA and optical 
spectroscopy processes. Notably, the bi-Gaussian power profile 
produces stripes of nearly perfect lateral symmetry at steady state, 
with their centers reaching the corresponding peak temperatures Tp 
and the continuous variation in lateral thermal gradient mirrored 
on each side of the stripe. We incorporate this structure into the 
kernel of XAI by forcing its main component to be symmetric around 
the center of a stripe (see the “XAI” section in the “materials and 
methods” part). In addition, SARA extracts key features of the stripe 

texture from the micrograph to further improve the kernel design, 
i.e., by identifying the stripe center and by detecting systematic opti-
cal changes across the stripe that we associate with structural tran-
sitions (47, 48). These optical transitions are identified by peaks in 
the gradient signal across a stripe, the locations of which are shown 
as vertical yellow lines in Fig. 2B. Furthermore, the two outermost 
detected peaks in the gradient signal give an estimate of how wide 
the lg-LSA stripe is, i.e., where the unannealed, amorphous film ends 
and the crystallization begins. We use slightly broadened peaks in the 
RGB gradient signal (purple line in Fig. 2C) and the overall width of the 
lg-LSA stripe (red line in Fig. 2C) as the RGB and LSA prior, respec-
tively. These two functions are then used to rescale the kernel of the GP 
in the XAI cycle. Lastly, we account for small thickness variations of 
the film across the stripe by adding a linear component to the kernel.

To improve the efficiency of XAI, the reflectance r(x, ) at any 
position x is expanded in Legendre polynomials as a function of 
wavelength  before it is fed into the GP. Because the reflectance 
varies smoothly with , the Legendre expansion can be truncated 
between the 10th and 20th order at essentially no loss in accuracy 
(49) (see fig. S1), which reduces the dimensionality from the 2046 
measured photon wavelength to a compact space of 10 to 20 Legendre 
coefficients. For our system, we use 16 coefficients throughout. 
Figure 1 (bottom middle) shows the first four Legendre coefficients 
of the reflectance data and our GP model’s posterior predictive mean 
and uncertainty for those coefficients.

To demonstrate the advantage of our specialized XAI kernel with 
respect to a set of conventional kernels, we perform statistical 
benchmarks on 617 lg-LSA experiments at distinct conditions, (Tp, )j. 
For each of the stripes, we measure the reflectance at n randomly 
selected positions ​​{​x​ i​​}​j​ n​​ on a grid spaced 10 m apart and use these 
measurements as inputs to a GP model with different kernels. The 
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AI active learning cycle to accelerate
reflectance measurements

Fig. 2. The characterization AL loop to accelerate acquisition of the reflectance spectroscopy necessary for phase boundary detection. (A) Overall workflow. A 
microscope image (B) is captured to extract the stripe features, which are fed as a scaling function to the XAI kernel. The core features are the LSA prior and the RGB tran-
sition prior, which are sums of generalized Gaussian functions, as shown in (C). The corresponding gradient peak positions are denoted as yellow vertical lines in (B). XAI 
takes these functions as prior knowledge to set up a stripe-specific kernel that facilitates rapid model convergence. The AL loop is performed iteratively on reflectance 
measurements r(xi, ) over positions xi, which are expanded into Legendre polynomials to reduce the dimensionality (see the middle panel in Fig. 1). (D) Performance of 
different kernel designs, illustrating that our XAI kernel with both LSA (XAI + LSA) and LSA + RGB (XAI + RGB) priors outperforms other conventional kernels. (E) Performances 
of the different acquisition function (R, random; U, uncertainty; IU, integrated uncertainty; IGU, integrated gradient uncertainty sampling). The solid lines represent the 
XAI + RGB kernel, while the dashed lines correspond to the RBF kernel.
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ground truth is exhaustively measured across the whole stripe ranging 
over 1.5 mm, corresponding to a total of 151 measurements. For a 
range of n, we repeat this test 32 times for every stripe with indepen-
dent random locations and average the coefficient of determination 
R2 for each kernel on the exhaustive data. This reduces the statistical 
noise in the results to a negligible value. Furthermore, we bench-
mark every kernel with a range of length scales and select the best in 
terms of R2 score (see the “Error metrics” section). By construction, 
our benchmark disentangles the effects of AL and kernel design, 
and the kernel with the right inductive bias will express the data 
best, even if all measurements are random. The results of this 
benchmark are illustrated in Fig. 2D, showing the performance of 
the various kernels with respect to the number of random measure-
ments n. The radial basis function (RBF) kernel performs poorly, 
barely reaching an R2 score of 0.8 within 37 measurements. The 
Matérn kernel performs better, requiring n = 25 to reach the same 
score. The XAI kernels perform best: Depending on whether prior 
knowledge from the microscope image is included (“XAI + LSA” 
with LSA prior only and “XAI + RGB” with LSA and gradient peak 
prior), we obtain an R2 value of 0.8 with as few as 16 sampling points. 
The precise modeling of the optical measurements, its incorporation 
into the AL model, and the model’s initialization with the RGB image 
prior knowledge all contribute to the fast learning rate at the onset 
of autonomous experimentation, as required for efficient AL.

Having designed the kernel for the XAI cycle, we turn our atten-
tion to the acquisition function, that is, the function that chooses 
the next measurement based on the available information. An 
important component of many performant acquisition functions is 
the reduction of uncertainty in a target variable. Here, we benchmark 
three different acquisition functions, two of which are nonstandard. 
In particular, we study uncertainty (U) sampling, which chooses the 
next measurement at the point of maximum uncertainty in the 
Legendre coefficients; integrated uncertainty (IU) sampling, which 
selects the point that minimizes the integrated uncertainty over the 
whole sampling domain; and integrated gradient uncertainty (IGU) 
sampling, which is similar to IU but reduces the overall uncertainty 
in the gradients of the model. The last strategy targets our quantity 
of interest, because the reflectance gradients are indicative of the 
phase boundaries in the processing phase diagram. For this reason, 
we quantify the error of the model in the gradients, rather than the 
error to the observed data. Because we cannot directly observe the 
gradients, we generate ground truth data by training our GP model 
on the exhaustive measurements and taking the derivative of the 
fitted model. We then record the R2 score of the derivatives of the 
model for each of the acquisition functions at every iteration.

In Fig.  2E, we show the performance of the various sampling 
strategies as a function of AL iteration i, using either the XAI + RGB 
kernel (solid lines) or the RBF kernel (dashed lines). The best 
performance is achieved with the stripe-specific, highly optimized 
XAI + RGB kernel in conjunction with IGU sampling, reaching an 
R2 score of 0.8 and 0.9 within 9 and 15 iterations, respectively. Note 
that random sampling with the best kernel design still outperforms 
the best sampling strategies with the worst kernel. Furthermore, the 
acquisition functions do not differ markedly with the XAI + RGB 
kernel, highlighting the importance of incorporating the problem 
structure into our AI model and AL cycle. Compared to random 
sampling with an RBF kernel, the best strategy accelerates the 
acquisition and characterization by a factor of 9.7 for an R2 of 0.8, 
approximately one order of magnitude.

ΣAI: Accelerating phase exploration and  
processing conditions
Once an lg-LSA stripe has been processed by XAI, its output reflec-
tance gradient information is fed into the external synthesis AI 
agent, ΣAI. Its main task is threefold: (i) assemble the incoming data, 
(ii) propagate uncertainty from every lg-LSA experiment to predict 
the gradient signal and its uncertainty throughout the search space, 
and (iii) ultimately propose new conditions for the synthesis experi-
ments. The overall workflow of this process, which integrates the 
techniques described below, is shown in Fig. 3A.

The optical data of an lg-LSA anneal are processed through the 
nested XAI loop, the output of which is the gradients of the reflec-
tance spectroscopy across a stripe, g(x) = ∥∂xr(x,·)∥2. This spatial 
gradient information is then transformed onto a temperature scale 
based on the Gaussian-type temperature profile ​​T​ ​T​ p​​,​​​(x) shown in 
Fig. 3B (blue line). Because the XAI kernel is symmetric up to the 
linear term, the gradient information is symmetric about the peak 
temperature Tp so that we only need to sample g(x) along one side 
from the stripe center (orange crosses in Fig. 3B).

In principle, one single lg-LSA stripe would produce the com-
plete temperature conditions between room temperature Tr and Tp 
at a given dwell time . Hence, the set of metastable materials and 
their transition conditions would be available from a single stripe if 
one selected a high Tp (e.g., 1400°C) and Tmin = Tr. In practice, the 
concomitant increase in temperature gradient with Tp would re-
quire progressively higher spatial resolution to characterize the full 
range of transitions and results in undesirably high uncertainty in 
the modeled temperature. With our experimental characterization 
technique, the spatial resolution is limited to approximately 10 m, 
and thus, the design of lg-LSA synthesis conditions must be done 
under consideration of the position-dependent temperature varia-
tion within a single spectroscopy measurement, which makes the 
selection of Tp at a given  a nontrivial decision based on the aggre-
gate information that can be gained from the entire lg-LSA stripe.

Properly propagating the multiple sources of uncertainty from 
synthesis and characterization through the model of the phase 
boundary map is extremely important: In standard GP regression, 
the inputs are assumed to be free of noise, but accounting for such 
errors is crucial when dealing with experimental measurements. 
Here, we include and propagate the uncertainties of the inputs due 
to two sources. First, the peak temperature reached in an lg-LSA 
anneal can vary within an error range of up to ​​​ ​T​ p​​​​​ = 25°C at 1400°C 
due to fluctuation in the laser power, even after reaching steady 
state (Peak error in Fig. 3B). Second, the temperature profile itself 
gives rise to an error proportional to the spatial rate of change T(x) 
∝∣∂x​​T​ ​T​ p​​,​​​(x)∣, as shown by the green area in Fig. 3B. Note that the 
error bars in Fig. 3B are not to scale and intended solely for a 
schematic illustration.

As opposed to the XAI model of optical spectroscopy, the gradient 
map in synthesis space has no analogous physics-based model, in 
part because too few synthesis phase diagrams are known, and their 
underlying features remain an open question. The large dynamic 
range of dwell time motivates its logarithmic sampling, and the 
distinct influence of temperature and dwell time on synthesis moti-
vates independent parameterization of these two dimensions. While 
we aim to learn more structured representations of synthesis phase 
diagrams in future refinements of the SARA framework, for the 
purposes of the present work, we find a Matérn kernel, with sepa-
rate length scales for the temperature and dwell time dimensions, to 

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 15, 2022



Ament et al., Sci. Adv. 7, eabg4930 (2021)     17 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 12

enable rapid model convergence in the ΣAI loop while remain-
ing flexible with respect to the gradient map in synthesis phase  
space.

In contrast to the XAI cycle, there is more opportunity to in-
corporate structure based on prior knowledge into the acquisition 
function, rather than the kernel, of ΣAI. As shown in Fig. 3C, random 
sampling performs only slightly worse than more sophisticated 
acquisition methods like uncertainty sampling or upper confidence 
bound (UCB) sampling in terms of ​​R​s​ 

2​​, a generalization of R2 that 
takes into account the heteroscedasticity of the data due to the 
propagation of uncertainty (see the “Error metrics” section). This 
behavior can be understood by considering the following: Every 
experiment at {Tp, } produces a range of temperatures T < Tp at 
which new information is obtained, thereby reducing the uncertainty 
not only at Tp but also in a wide range of temperatures below it. 
Hence, uncertainty sampling at Tp and  alone is a poor strategy. To 
address this issue, we introduce stripe uncertainty (SU) sampling, 
which takes into account the uncertainty in the whole temperature 
range between Tmin and Tp. This strategy greatly improves perform
ance, reaching ​​R​s​ 

2​ >  0.7​ within 15 iterations.
The plot in Fig. 3D shows the gradient heatmap of Bi2O3 from an 

exhaustive sampling of all 617 lg-LSA stripes, with gradient peaks at 
every value of  highlighted in white. Note that these peaks are 
connected and form ridges that can be well interpreted as phase 
field boundaries. To label these phase fields, we selectively collect 
and analyze XRD data of lg-LSA stripes annealed at conditions 
close to the field centers (see the Supplementary Materials for 
details). Notably, only few XRD measurements suffice to label the 
phase map, once the phase boundaries have been determined via 
the reflectance data. The phase field (i) below approximately 350°C 
corresponds to the as-deposited amorphous film, while a slight 
gradient ridge separates it from (ii), a densified, amorphous 

regime. At approximately 500°C, there is a ridge that extends across 
the complete dwell range, corresponding to the crystallization onset 
of the  phase in domain (iii). The boundary separating (iii) from 
(iv) at approximately 550°C corresponds to the onset of a two-phase 
region, where both the  and  phases of Bi2O3 coexist, and above 
approximately 650°C, we observe phase-pure -Bi2O3 in (v). The 
gradient ridge between (iv) and (v) is particularly weak and wide in 
T, and we consider the bump arising at around 103.5 s to be an 
artifact within the measurement uncertainty. The phase field above 
approximately 810°C corresponds to amorphous Bi2O3 that reforms 
after quenching from melt [the bulk melting temperature of Bi2O3 
is 817°C (50)] and stretches out across all values of .

A representative evolution of the actively learned gradient phase 
map is shown in Fig. 4, with six snapshots from (A) to (F). Figure 4A 
shows the preliminary gradient map at iteration n = 3: The two 
gradient ridges spanning all dwells qualitatively correspond to the 
crystallization boundaries from either melt (v and vi in Fig. 3D) or 
the deposited, densified thin film (ii and iii). At n = 8 in Fig. 4B, we 
detect the onset of the two-phase region (iii and iv), and at n = 15 
(Fig. 4C), we detect the phase-pure -Bi2O3 boundary (iv and v). 
With only n = 25 iterations, we identify the last boundary, namely, 
the amorphous densification onset (i and ii; see Fig. 4D). At this 
point, the overall features of the gradient phase map are already 
qualitatively captured completely, and subsequent iterations merely 
refine the boundary locations (Fig. 4E), getting closer to the exhaustive 
phase map in Fig. 4F.

Two factors are crucial for ΣAI to achieve a factor of approximate-
ly 14 acceleration to reach ​​R​s​ 

2​ =  0.7​ compared to random sampling 
without propagation of input uncertainties. First, incorporating 
materials synthesis into our SARA discovery framework allows us 
to check for convergence of the phase diagram on the fly. Even with 
random sampling, the possibility of quantifying the progress and 

A AI active learning cycle for
synthesis and phase map

construction

C DB

Fig. 3. The synthesis AL loop to accelerate materials exploration. (A) Overall external workflow. Starting from an initial set of conditions, an lg-LSA stripe is annealed 
and processed by XAI. The gradients are then fed into the ΣAI agent, which constructs a (preliminary) gradient phase map and proposes the next experimental conditions. 
(B) The transformation of the XAI reflectance gradients requires a rigorous error assessment and propagation. Because of the symmetric XAI kernel, only one side from the 
stripe center is sampled on a uniform temperature mesh. The errors propagated to the ΣAI stem from the variation in the peak temperature (peak error) and the gradient 
of the temperature profile (profile error). (C) Performance of different ΣAI acquisition strategies: random (R), uncertainty (U), stripe uncertainty (SU), and upper confidence 
bound (UCB) sampling. The solid and dashed lines correspond to GP regression with and without input uncertainty, respectively. (D) Gradient phase map of Bi2O3, where 
the peak ridges are highlighted with light lines. The phase regions are labeled a posteriori with selected XRD measurements, from low to high temperatures: (i) amorphous 
as-deposited; (ii) rearranged, densified amorphous; (iii) -Bi2O3; (iv) mixed-phase region of -Bi2O3 and -Bi2O3; (v) pure -Bi2O3; and, lastly, (vi) melt-quenched amorphous.
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monitoring convergence in the gradient mapping informs us how 
well the phase space has been sampled, thereby substantially re-
ducing the resource cost. Second, the comprehensive uncertainty 
propagation in conjunction with the stripe uncertainty acquisition 
function realizes the full potential of AI and AL and decreases the 
required samples to a fraction of the exhaustive measurements. 
SARA’s overall AL acceleration is the product of the acceleration 
factors of XAI and ΣAI due to the cycles’ nested design.

DISCUSSION
In conclusion, we have developed SARA, an AI-driven autonomous 
closed-loop materials discovery framework that integrates robotic 
materials synthesis with automated microscopy imaging and re-
flectance spectroscopy characterization. SARA incorporates a set of 
nested AL loops based on specialized physics-inspired GP regression 
models to synthesize, characterize, and iteratively explore nonequi-
librium synthesis phase maps using HT lg-LSA thin-film processing. 
In particular, SARA tightly integrates the physics of the experi-
ments and quantifies experimental uncertainties in both the inputs 
and the outputs of the model. We highlight SARA’s capabilities on 
the Bi2O3 system by showing that SARA reduces the time to map 
the system’s phase boundaries by more than two orders of magnitude, 
in contrast to random or exhaustive searches. In particular, SARA 
identifies the synthesis conditions that trap metastable -Bi2O3 at 
room temperature, a promising solid oxide electrolyte. While scaling-
up synthesis is a challenge for future work, a flat-top laser profile 
could be applied to anneal Bi2O3 at these processing conditions and 

integrated into fabrication of thin-film solid oxide fuel cells in 
portable power applications, or other integrated solid-state micro-
electromechanical system (MEMS) devices (51, 52).

The speedup in synthesis and data acquisition achieved by SARA 
is a fundamental prerequisite for paving the path toward exploratory 
HT efforts with additional chemical degrees of freedom and extended 
processing parameters and when targeting property optimization. 
The gradient phase map construction can be extended to additional 
degrees of freedom, e.g., on composition spreads over a continuous 
range of chemistries. While our current lg-LSA synthesis is limited 
to inorganic thin films that are transparent to infrared (IR) laser 
radiation (33), e.g., complex oxides, future efforts are aimed at 
incorporating IR-transparent substrates that will allow the au-
tonomous synthesis and processing of broader materials classes, 
e.g., metals and alloys. Furthermore, techniques that enable the 
characterization of in situ lg-LSA processing would provide us the 
means to better understand the transformation kinetics of metastable 
phases and improve our design of physics-inspired AI models. 
SARA’s nested AI architecture also allows the incorporation of 
additional agents for multi-objective optimization efforts by includ-
ing robotic measurements of target properties. In addition to phase 
boundary mapping, research objectives for which SARA would 
enable new modalities of materials design include the following: 
discovery of a synthesis condition for a not-yet-synthesized phase, 
extension of the optical spectroscopy to characterize visible absorp-
tion to identify syntheses of materials for solar energy applications, 
and incorporation of new performance characterization such as 
electrical conductivity measurements. These latter examples involve 

D

A B C

E F

Fig. 4. The evolution of the actively learned gradient phase map of the Bi2O3 system at selected number of iterations n. (A to E) We use the stripe uncertainty (SU) 
acquisition strategy, starting from a randomly selected condition (Tp, )1. The gradient ridges are shown as white lines, and the conditions (Tp, )i at which the experiments 
have been performed are shown as white crosses (note that not all crosses are shown, because the plots have been cropped to a smaller range than the range of experimental 
conditions). For each panel, the number of sampled conditions n is indicated at the top, together with the corresponding ​​R​s​ 2​​ score. (F) Final exhaustively sampled phase map.
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mapping of synthesis phase diagrams in the context of performance 
metrics for a target application, the central goal of studying PCSP 
relationships. SARA’s autonomous execution of these studies 
constitutes a grand vision of AI-assisted materials science.

MATERIALS AND METHODS
Experiments and measurements
Thin-film deposition
We used thermally oxidized (200 nm oxide), highly doped (p-type, 
0.01 to 0.02 Ohm·cm) Si wafers with lithographically patterned gold 
alignment marks as substrates for our thin-film deposition. Radio 
frequency (RF) reactive sputtering from a Bi target in an atmosphere 
of 8-mTorr Ar and 2-mTorr O2 was used to deposit the Bi2O3 sample 
in a custom-built sputter system. The substrate was rotated while 
operating the target at an RF power of 20 W to create a 170-nm-thick 
film with <10% thickness variation.
Lateral gradient laser spike annealing
The lg-LSA anneals were conducted using a continuous-wave CO2 
laser operating at  = 10.6 m and maximum power of 125 W, 
which was configured to produce a power profile with a bi-Gaussian 
shape (320-m-wide lateral FWHM and 80-m-long longitudinal 
FWHM). To reach steady state, each anneal was conducted on a 
5-mm-long stripe, with peak temperatures ranging from 400° to 
1300°C and processing dwell times between 250 s and 10 ms. The 
stripes were located 2 mm apart to avoid thermal overlap between 
anneals. With this configuration, a 100-mm-diameter wafer offers 
space for a total of up to 625 stripes with distinct anneal conditions. 
Note that the dwell  is related to the scan velocity v via the FWHM 
of the laser in the scan direction (longitudinal) through ​ = ​ FWHM _ v  ​​. 
 is approximately the time scale during which the temperature is 
within 5% of the peak temperature (33). To avoid potential location 
bias on the wafer arising from variations in film thickness, the 
anneal locations were randomized across the thin film with respect 
to Tp and . In total, we annealed 617 lg-LSA stripes on our Bi2O3 
sample with 400 ≤ Tp ≤ 1300∘C and 250 ≤ Tp ≤ 10,000 s.
Microscopy imaging
We used a Thorlabs complementary metal-oxide semiconductor 
camera (RGB channels with 1024 × 1280 pixels), which was aligned 
normal to the sample, together with a coaxial illumination using 
white light over a spot size of approximately 1 mm in diameter. The 
camera magnification was set to produce a field of view of approxi-
mately 1 mm horizontally, resulting in a spacing of 0.92 m between 
pixels. The raw microscope images and the software to process 
them are available online (53, 54).
Reflectance spectroscopy
A white light source (400 <  < 900 nm) was focused down to a 
single 10-m-diameter spot using optical fibers to locally illuminate 
the sample, allowing spatially resolved reflectance measurements. We 
used a flame spectrometer from Ocean Optics to collect the reflec-
tance spectroscopy with an optimized integration time of ≈4500 ms. 
The reflected light was measured from  = 340 to  < 1026 nm 
at 2046 discrete values. The reflectance data were calibrated and 
normalized with respect to a dark reference spectrum, and a 
spectrum from an Ag-coated mirror. For the exhaustive reflectance 
measurements, the optical fiber was scanned across an lg-LSA stripe 
over a range of 1.5 mm in 10-m increments, leading to 151 samples 
per stripe. The raw reflectance data and the software to process are 
available online (53, 54).

X-ray diffraction
The XRD data were collected using the ID3B beamline at the 
Cornell High Energy Synchrotron Source (CHESS) with a 9.7-keV 
beam, which was focused to a spot size on the sample of 20 m by 
40 m at a 2∘ angle of incidence. A Pilatus 300K detector was used 
to capture the diffracted signal. The XRD data were collected every 
10 m across a stripe with a 50-ms integration time for each frame. 
The 2D detector data were integrated along the  direction using 
pyFAI (55).

Computational methods
In the following, bold lowercase letters refer to vectors and bold 
uppercase letters refer to matrices. Given a collection of inputs 
X = [x1, …, xn] of a function f, we let f(X) be the result of the applica-
tion of f to each column of X, f(X) ≔ [f(x1), …, f(xN)].
Gaussian processes
A GP is a distribution over functions whose finite-dimensional 
marginal distributions are multivariate normal. That is, for any 
sample f of a GP and any finite selection of inputs X, we have f (X) ∼ 
N(X, ΣX), for some mean vector X and covariance matrix 
ΣX. Analogous to the multivariate case, a GP is completely defined 
by its first and second moments: a mean function (·) and a covari-
ance function (·,·), also known as a kernel. In particular, if 
f ∼ GP(, ), then for any finite collection of inputs X

	​ f (X) ∼  N((X ), (X, X ) )​	 (1)

where (X, X) is the matrix whose (i, j)nth entry is (xi, xj). Fortu-
nately, the posterior mean p and posterior covariance p of a GP 
conditioned on observations with normally distributed noise have 
closed forms and only require linear algebraic operations

	​​
​μ​ p​​(​x​ *​​)​ 

= μ(​x​ *​​) + κ(​x​ *​​, X) ​Σ​X​ −1​(y − μ(X ))
​    

​κ​ p​​(​x​ *​​, ​x​ *​ ′ ​)
​ 

= κ(​x​ *​​, ​x​ *​ ′​) − κ(​x​ *​​, X) ​Σ​X​ −1​ κ(X, ​x​ *​ ′​)
​​	 (2)

where for homoscedastic regression ​​Σ​ X​​  =  (X, X ) + ​​y​ 2​ I​ and y is 
the SE of the target y. Because a GP’s behavior is chiefly determined 
by the kernel, its performance can be improved markedly by in-
corporating important problem structure into the kernel. For more 
background on GPs, see (56). For the present work, we developed a 
GP framework in Julia (57) with which we implemented SARA’s AL 
technology (54).
Active learning
The field of AL considers the problem of selecting data in an 
optimal way to reduce the total amount of data that is required to 
effectively train a model (5, 58). To this end, the notion of an acqui-
sition function is important. An acquisition function a(X, y) depends 
on currently available data and outputs a suggested observation x*. 
For example, if f∣X, y denotes the posterior of f after having seen 
the data, and var( f∣X, y) is the posterior variance (itself a func-
tion), then

	​ arg ​max​ 
​x​​ *​

​ ​  var(f ∣  X, y ) (z)​	 (3)

defines an acquisition strategy known as uncertainty sampling. 
Other acquisition functions are based on upper-confidence bounds, 
expected improvement, and probability of improvement. Overall, an 
important ingredient for AL is the quantification of uncertainty, 
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which is a strength of Bayesian models. In the realm of Bayesian 
models, GPs are of particular importance because of their unique 
combination of flexibility, closed-form inference formulas, and 
uncertainty quantification. For these reasons, we chose to build 
SARA’s computational backbone on GPs.
Input noise
Because of the importance of uncertainty quantification for AL, it is 
critical to take all sources of uncertainty into account. In the case of 
SARA, it is crucial to account for errors in not only the measure-
ments (i.e., model outputs) but also the experimental conditions 
(i.e., model inputs) due to intrinsic experimental uncertainties in 
the temperature profile. However, the general problem of posterior 
inference with input noise is intractable. For this reason, one needs 
to use approximate methods like variational approximations (59, 60) 
and Markov chain Monte Carlo (61) or methods that transform the 
problem of homoscedastic regression with input noise to one of 
heteroscedastic regression (62) without input noise (63–65). A par-
ticularly efficient technique is that of McHutchon and Rasmussen 
(66), which is based on propagating the input uncertainty using a 
linear approximation of the standard posterior mean. According to 
this model, given the regular posterior mean p(x), the input noise–
corrected version can be computed by updating

	​​ Σ​ X​​  ← ​ Σ​ X​​ + diag ​(​​ x​​(X ) ⊙ ​∂​ x​​ ​​ p​​(X ) )​​ 2​​	 (4)

in Eq. 2 for the GP posterior. Notably, we generalize the original 
work in making the input uncertainty x(X) dependent on the 
input. This is possible because the non-constant uncertainties in 
SARA’s experimental process can be estimated well by physical 
considerations (see the “ΣAI” section for details). Lastly, note 
that Eq. 4 makes the approximate posterior uncertainty dependent 
on the values of the data via the posterior mean, not just the loca-
tions of the measurements.
XAI
The goal of XAI is to infer the reflectance r(x, ) using the least num-
ber of measurement locations xi as possible. Each measurement of 
the inner loop acquires the wavelength-dependent spectroscopic 
reflectance of the underlying thin film, that is, a vector whose 
entries correspond to reflectance intensities at a given wavelength.

To aid the efficiency of our model, we first reduce the dimension 
of the output by projecting it onto the basis of a small number 
(10 to 20) of Legendre polynomials. Because the signal is smooth as 
a function of wavelength, it admits a sparse approximation in this 
basis, allowing the compression of the signal with virtually no loss 
of information (49) [see also the Supplementary Materials]. The 
AL cycle then works on the dimensionality-reduced form of the 
reflectance data.

In the following, we describe the construction of the XAI kernel 
function, which integrates special structure of the data and is a 
critical part of XAI. In particular, the kernel incorporates (i) lateral 
symmetry, (ii) variance scaling based on RGB data, and (iii) asymp-
totically linear behavior. Starting with a Matérn 5/2 kernel k with a 
length scale l, we symmetrize it via ksym(x, y) = k(x, y) + k(x − c, y − 
c) around the stripe center c, which we estimate from the RGB 
images. We incorporate further information from the RGB images 
by scaling the kernel with the LSA or RGB prior function frgb shown 
in Fig. 2C. In particular, we use the peaks in the RGB gradient signal, 
slightly broaden them by a Gaussian with  = 20 m, and sum them 
to our RGB prior function (purple line in Fig. 2C). In addition, the 

overall width of the lg-LSA stripe gives rise to the LSA prior, which 
is a generalized Gaussian with a wide shape parameter of  = 4 and 
a scale parameter  defined by the stripe width (red line in Fig. 2C). 
frgb is then given by a weighted sum of these two prior functions. 
This scaling constrains the search space, because we do not expect a 
lot of change in the underlying material if the experimental condi-
tions (e.g., temperature) stay similar, and gives rise to the kernel 
frgb(x)ksym(x, y)frgb(y). Lastly, we incorporate an asymptotically linear 
behavior, due to thickness variations in the wafer, with the linear 
kernel kline(x, y) = x · y + b, where b is a constant that controls the 
variance of the bias term of the line. As a result, the XAI kernel for 
one Legendre coefficient is proportional to

	​​ k​ ​X​ AI​​​​(x, y ) = ​f​ rgb​​(x ) ​k​ sym​​(x, y ) ​f​ rgb​​(y ) + ​k​ line​​(x, y)​	 (5)

For all the Legendre coefficients, we then use a GP with the 
kernel aikXAI(x, y), where {ai} are scaling coefficients that incorpo-
rate the different variances of the Legendre coefficients, to learn 
the reflectance map. This can also be interpreted as comput-
ing a vector-valued GP with the matrix-valued kernel KXAI(x, y) = 
diag (a) kXAI(x, y), where a is the vector of scaling coefficients. For 
a comprehensive review on matrix-valued kernels, see (67). The 
length scale l of the Matérn kernel can be optimized via maximiza-
tion of the marginal likelihood (56). However, to make the reported 
results in Fig. 2D independent of this nonconvex optimization pro-
cedure, we ran the benchmarks using a range of fixed length scales 
and reported the best performing combination for each kernel.

Regarding the acquisition function, in addition to uncertainty 
sampling, we benchmark XAI using IU sampling, a policy that 
reduces the total variance over a set of potential measurement loca-
tions Z. In particular, IU is defined by

	​ arg ​min​ 
​x​​ *​

​  ​ ​ ∑ 
z∈Z

​​​ var( f∣X, y, ​x​​ *​ ) (z)​	 (6)

where X is the set of inputs and y is the set of outputs of the model. 
Note that we can calculate the quantity var(f ∣ X, y, x*) because the 
standard posterior GP variance only depends on the measurement 
location, not the value y*. Lastly, we note that the derivative of a GP 
is also a GP (68). Plugging the derivative GP into Eq. 6 yields IGU 
sampling, which achieves the best performance in the XAI acquisi-
tion benchmark (see Fig. 2).
ΣAI
ΣAI works to identify phase regions and their boundaries in the 
temperature–dwell time space and, more generally, the processing-
composition space. The raw reflectance data cannot be used directly 
for this task because of two reasons. First, the data are measured as 
a function of position, not temperature. Therefore, we convert the 
stripe-specific reflectance function ​​r​ ​T​ p​​,​​​(x, ) to the temperature do-
main using the temperature profile ​​T​ ​T​ p​​,​​​, yielding ​​r​ ​T​ p​​,​​​(T, ). Second, 
the reflectance varies not only with the phase behavior but also with 
the film thickness across the wafer. For this reason, we calculate the 
L2-norm of the rate of change of the spectroscopic reflectance, 
which is invariant to linear thickness variations of the film. In 
particular, for all T < Tp, we want to infer

	​ d(T,  ) ≔ ​ √ 

_______________

  ∫ ​​(​​ ​ 
∂ ​r​ ​T​ p​​,​​(T, )

 ─ ∂ T  ​​)​​​​ 
2

​ d ​​	 (7)
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d quantifies how much the spectroscopic reflectance changes as a 
function of temperature and dwell time and is a strong indicator of 
phase changes (47). Estimating the phase boundaries then reduces to 
getting an accurate estimate of d over all (T, ) (and potentially 
composition c). This is the goal of the ΣAI loop.

Crucially, experimental errors can occur in x and, therefore, in 
T, making it imperative to quantify the uncertainty due to these 
input errors and propagate them to ΣAI. Our benchmarks show that 
ignoring these uncertainties leads to a substantial deterioration in 
AL performance (see Fig. 3C).

To this end, we now discuss the intrinsic experimental uncertain-
ties due to the temperature profile ​​T​ ​T​ p​​,​​​(x) of the laser. In particular, 
we compute the variance of the true temperature around the value 
predicted by the temperature profile as a function of position by

	​​ ​T​ 2 ​(x ) = ​​​T​ p​​​ 2  ​ ​​(​​ ​ 
​T​ p​​

 ─ 1400 ​​)​​​​ 
2

​ + ​​x​ 2​ ​​(​​ ​ 
∂ ​T​ ​T​ p​​,​​(x)

 ─ ∂ x  ​​)​​​​ 
2

​​	 (8)

where ​​​ ​T​ p​​​​​ is the SE in the peak temperature and x is the SE in the 
position. The first term quantifies the error at the peak temperature, 
which is largest at high temperatures (1400∘C) and falls off linearly 
with T. The second term quantifies uncertainties of the temperature 
profile, which not only are due to limited spatial resolution but also 
encompass random asymmetries in the profile of the laser. The 
form of term is derived using SE propagation techniques (69). For 
the results reported here, ​​​ ​T​ p​​​​​ = 25∘C and x = 50 m.

The expression for the temperature uncertainty in Eq. 8 is then 
used in conjunction with Eq. 4 to compute a GP that comprehen-
sively quantifies the uncertainties in the Legendre coefficients of the 
optical reflectance as a function of temperature. To compute d in 
Eq. 7, one simply sums the squared derivatives of the GPs of the 
Legendre coefficients of the reflectance

	​ d(T,  ) = ​√ 
____________

  ​∑ 
i
​ ​ ​(​∂​ T​​ ​​p​ (i)​(T ) )​​ 

2
​​ ​​	 (9)

Because we have access to the uncertainties in ​​​p​ (i)​​ from the GP, 
we can use uncertainty propagation techniques on Eq. 9 to calculate 
a first-order uncertainty estimate of d(T, ). For the outer loop, we 
used a two-dimensional Matérn 5/2 kernel with different length 
scales across each dimension. This allows the GP to learn indepen-
dent sensitivity parameters of the experiment for the input dimen-
sions. Note that the ΣAI benchmarks in Fig. 3C were carried out 
with fixed length scales to disentangle the effects of different acqui-
sition functions and hyperparameter learning.

For ΣAI, we designed an acquisition strategy that incorporates 
the property that a single stripe generates data throughout a range 
of temperatures. In particular, given experimental conditions xs 
that give rise to a stripe (Tp, , etc.), we sum the uncertainties of all 
relevant observations xi that are in the set Stripe(xs) of conditions 
on the stripe xs. In particular, we propose stripe uncertainty 
sampling:

	​ arg ​max​ ​x​ s​​
​ ​ ​   ∑ 

​x​ i​​∈Stripe(​x​ s​​)
​​​var( f∣X, y) (​x​ i​​)​	 (10)

Notably, one can use the same principle to generalize other 
acquisition functions. We investigated a stripe upper-confidence 
bound sampling policy. However, it performed worse or equal to 
the simpler stripe uncertainty sampling policy above. The synergy 

of the comprehensive uncertainty quantification and the stripe 
sampling function yields considerable benefits, as displayed in 
Fig. 3C.
Error metrics
In our benchmarks of the kernels and acquisition functions for the 
inner loop, we used the coefficient of determination R2 to measure 
performance, defined by

	​​ R​​ 2​ =  1 − ​ 
​∑ i​​ ​( f(​x​ i​​ ) − ​y​ i​​)​​ 2​​

  ─  
​∑ i​​ ​((y ) − ​y​ i​​)​​ 2​​

 ​​	 (11)

where (y) is the mean of the data y. The advantage of using R2 over 
other canonical measures like the mean-squared error is that it is 
dimensionless and easily interpretable as the proportion of the vari-
ance of the data that is explained by the model f.

As R2 weighs the deviation at every data point equally, it is not an 
ideal measure for heteroscedastic data, like the optical gradient data 
of ΣAI. For this reason, we use a generalization of R2, based on the 
log-likelihood of the heteroscedastic normal errors, to measure 
performance in the ΣAI benchmarks. In particular, the measure is 
given by

	​​ R​s​ 
2​  =  1 − ​ 

​∑ i​ ​​ ​( f(​x​ i​​ ) − ​y​ i​​)​​ 2​ / ​​i​ 
2​
  ─  

​∑ i​ ​​ ​((y ) − ​y​ i​​)​​ 2​ / ​​i​ 
2​
 ​​	 (12)

where i is the SD of the ith error. For SARA, the i are the product 
of the comprehensive uncertainty quantification of the experimen-
tal process. Clearly, ​​R​s​ 

2​​ reduces to R2 if the noise variances are all 
equal. If they are not, ​​R​s​ 

2​​ is a better measure of misfit, as it weighs the 
residuals of more certain data points stronger than those with greater 
uncertainty. Notably, similar pseudo-R2 scores based on log-likelihoods 
are used throughout statistics and applied fields (70–72).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg4930

REFERENCES AND NOTES
	 1.	 A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, 

A. W. R. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, 
D. T. Jones, D. Silver, K. Kavukcuoglu, D. Hassabis, Improved protein structure prediction 
using potentials from deep learning. Nature 577, 706–710 (2020).

	 2.	 B. Huang, O. A. von Lilienfeld, Quantum machine learning using atom-in-molecule-based 
fragments selected on the fly. Nat. Chem. 12, 945–951 (2020).

	 3.	 G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural 
networks. Science 355, 602–606 (2017).

	 4.	 N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, S. Ermon, Combining satellite imagery 
and machine learning to predict poverty. Science 353, 790–794 (2016).

	 5.	 B. Settles, “Active learning literature survey” (Technical reports, University of 
Wisconsin-Madison Department of Computer Sciences, 2009).

	 6.	 Y. Gil, M. Greaves, J. Hendler, H. Hirsh, Amplify scientific discovery with artificial 
intelligence. Science 346, 171–172 (2014).

	 7.	 A. A. Melnikov, H. Poulsen Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, 
H. J. Briegel, Active learning machine learns to create new quantum experiments. Proc. 
Natl. Acad. Sci. U.S.A. 115, 1221–1226 (2018).

	 8.	 R. F. Murphy, An active role for machine learning in drug development. Nat. Chem. Biol. 7, 
327–330 (2011).

	 9.	 J. Z. Kolter, Z. Jackowski, R. Tedrake, Design, analysis, and learning control of a fully 
actuated micro wind turbine, in Proceedings of the 2012 American Control Conference 
(ACC) (IEEE, 2012), pp. 2256–2263.

	 10.	 R. B. van Dover, L. F. Schneemeyer, The codeposited composition spread approach 
to high-throughput discovery/exploration of inorganic materials. Macromol. Rapid 
Commun. 25, 150–157 (2004).

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 15, 2022

https://science.org/doi/10.1126/sciadv.abg4930
https://science.org/doi/10.1126/sciadv.abg4930


Ament et al., Sci. Adv. 7, eabg4930 (2021)     17 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 12

	 11.	 J. R. Hattrick-Simpers, J. M. Gregoire, A. G. Kusne, Perspective: Composition-structure-
property mapping in high-throughput experiments: Turning data into knowledge.  
APL Materials 4, 053211 (2016).

	 12.	 K. G. Reyes, B. Maruyama, The machine learning revolution in materials? MRS Bull. 44, 
530–537 (2019).

	 13.	 H. S. Stein, J. M. Gregoire, Progress and prospects for accelerating materials science 
with automated and autonomous workflows. Chem. Sci. 10, 9640–9649 (2019).

	 14.	 D. P. Tabor, L. M. Roch, S. K. Saikin, C. Kreisbeck, D. Sheberla, J. H. Montoya, 
S. Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait, C. Amador-Bedolla, C. J. Brabec, 
B. Maruyama, K. A. Persson, A. Aspuru-Guzik, Accelerating the discovery of materials 
for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

	 15.	 A. G. Kusne, H. Yu, C. Wu, H. Zhang, J. Hattrick-Simpers, B. DeCost, S. Sarker, C. Oses, 
C. Toher, S. Curtarolo, A. V. Davydov, R. Agarwal, L. A. Bendersky, M. Li, A. Mehta, 
I. Takeuchi, On-the-fly closed-loop materials discovery via Bayesian active learning. 
Nat. Commun. 11, 5966 (2020).

	 16.	 D. Xue, P. V. Balachandran, J. Hogden, J. Theiler, D. Xue, T. Lookman, Accelerated search 
for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016).

	 17.	 R. Yuan, Z. Liu, P. V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, T. Lookman, 
Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active 
learning. Adv. Mater. 30, 1702884 (2018).

	 18.	 P. Nikolaev, D. Hooper, N. Perea-López, M. Terrones, B. Maruyama, Discovery 
of wall-selective carbon nanotube growth conditions via automated experimentation. 
ACS Nano 8, 10214–10222 (2014).

	 19.	 P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, 
B. Maruyama, Autonomy in materials research: A case study in carbon nanotube growth. 
npj Comput. Mater. 2, 16031 (2016).

	 20.	 S. Sun, N. T. P. Hartono, Z. D. Ren, F. Oviedo, A. M. Buscemi, M. Layurova, D. X. Chen, 
T. Ogunfunmi, J. Thapa, S. Ramasamy, C. Settens, B. L. DeCost, A. G. Kusne, Z. Liu, 
S. I. P. Tian, I. M. Peters, J.-P. Correa-Baena, T. Buonassisi, Accelerated development 
of perovskite-inspired materials via high-throughput synthesis and machine-learning 
diagnosis. Joule 3, 1437–1451 (2019).

	 21.	 R. W. Epps, M. S. Bowen, A. A. Volk, K. Abdel-Latif, S. Han, K. G. Reyes, A. Amassian, 
M. Abolhasani, Artificial chemist: An autonomous quantum dot synthesis bot. Adv. Mater. 
32, 2001626 (2020).

	 22.	 B. P. MacLeod, F. G. L. Parlane, T. D. Morrissey, F. Häse, L. M. Roch, K. E. Dettelbach, 
R. Moreira, L. P. E. Yunker, M. B. Rooney, J. R. Deeth, V. Lai, G. J. Ng, H. Situ, R. H. Zhang, 
M. S. Elliott, T. H. Haley, D. J. Dvorak, A. Aspuru-Guzik, J. E. Hein, C. P. Berlinguette, 
Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, 
eaaz8867 (2020).

	 23.	 A. E. Gongora, B. Xu, W. Perry, C. Okoye, P. Riley, K. G. Reyes, E. F. Morgan, K. A. Brown,  
A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 6, 
eaaz1708 (2020).

	 24.	 L. Porwol, D. J. Kowalski, A. Henson, D.-L. Long, N. L. Bell, L. Cronin, An autonomous 
chemical robot discovers the rules of inorganic coordination chemistry without prior 
knowledge. Angew. Chem. Int. Ed. 59, 11256–11261 (2020).

	 25.	 J. Li, J. Li, R. Liu, Y. Tu, Y. Li, J. Cheng, T. He, X. Zhu, Autonomous discovery of optically 
active chiral inorganic perovskite nanocrystals through an intelligent cloud lab. Nat. 
Commun. 11, 2046 (2020).

	 26.	 Z. Li, M. A. Najeeb, L. Alves, A. Z. Sherman, V. Shekar, P. Cruz Parrilla, I. M. Pendleton, 
W. Wang, P. W. Nega, M. Zeller, J. Schrier, A. J. Norquist, E. M. Chan, Robot-accelerated 
perovskite investigation and discovery. Chem. Mater. 32, 5650–5663 (2020).

	 27.	 K. Alberi, M. B. Nardelli, A. Zakutayev, L. Mitas, S. Curtarolo, A. Jain, M. Fornari, N. Marzari, 
I. Takeuchi, M. L. Green, M. Kanatzidis, M. F. Toney, S. Butenko, B. Meredig, S. Lany, 
U. Kattner, A. Davydov, E. S. Toberer, V. Stevanovic, A. Walsh, N.-G. Park, A. Aspuru-Guzik, 
D. P. Tabor, J. Nelson, J. Murphy, A. Setlur, J. Gregoire, H. Li, R. Xiao, A. Ludwig, 
L. W. Martin, A. M. Rappe, S.-H. Wei, J. Perkins, The 2019 materials by design roadmap. 
J. Phys. D. Appl. Phys. 52, 013001 (2018).

	 28.	 A. Saksena, Y.-C. Chien, K. Chang, P. Kümmerl, M. Hans, B. Völker, J. M. Schneider, 
Metastable phase formation of Pt-X (X = Ir, Au) thin films. Sci. Rep. 8, 10198 (2018).

	 29.	 L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A novel bandit-based 
approach to hyperparameter optimization. J. Mach. Learn. Res. 18, 6765–6816 (2017).

	 30.	 M. O. Ahmed, B. Shahriari, M. Schmidt, Do we need “harmless” Bayesian optimization and 
“first-order” Bayesian optimization. NIPS BayesOpt (2016).

	 31.	 Scientific Autonomous Reasoning Agent (SARA): Integrating Materials Theory, 
Experiment and Computation—Research Areas—AFOSR.

	 32.	 P. V. Balachandran, B. Kowalski, A. Sehirlioglu, T. Lookman, Experimental search 
for high-temperature ferroelectric perovskites guided by two-step machine learning. 
Nat. Commun. 9, 1668 (2018).

	 33.	 R. T. Bell, A. G. Jacobs, V. C. Sorg, B. Jung, M. O. Hill, B. E. Treml, M. O. Thompson, Lateral 
temperature-gradient method for high-throughput characterization of material 
processing by millisecond laser annealing. ACS Comb. Sci. 18, 548–558 (2016).

	 34.	 T. F. T. Cerqueira, R. Sarmiento-Pérez, M. Amsler, F. Nogueira, S. Botti, M. A. L. Marques, 
Materials design on-the-fly. J. Chem. Theory Comput. 11, 3955–3960 (2015).

	 35.	 S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl, C. Wolverton, 
The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT 
formation energies. npj Comput. Mater. 1, 15010 (2015).

	 36.	 D. R. Clarke, S. R. Phillpot, Thermal barrier coating materials. Mater. Today 8, 22–29 
(2005).

	 37.	 R. H. J. Hannink, P. M. Kelly, B. C. Muddle, Transformation toughening in zirconia-
containing ceramics. J. Am. Ceram. Soc. 83, 461–487 (2000).

	 38.	 D. R. Clarke, C. G. Levi, Materials design for the next generation thermal barrier coatings. 
Annu. Rev. Mater. Res. 33, 383–417 (2003).

	 39.	 N. Satoh, T. Nakashima, K. Yamamoto, Metastability of anatase: Size dependent and irreversible 
anatase-rutile phase transition in atomic-level precise titania. Sci. Rep. 3, 1959 (2013).

	 40.	 Z.-H. Cui, F. Wu, H. Jiang, First-principles study of relative stability of rutile and anatase 
TiO2 using the random phase approximation. Phys. Chem. Chem. Phys. 18, 29914–29922 
(2016).

	 41.	 N. H. Vu, H. V. Le, T. M. Cao, V. V. Pham, H. M. Le, D. Nguyen-Manh, Anatase-rutile phase 
transformation of titanium dioxide bulk material: A DFT + U approach. J. Phys. Condens. 
Matter 24, 405501 (2012).

	 42.	 H. A. Harwig, On the structure of bismuthsesquioxide: The , , , and -phase. Z. Anorg. 
Allg. Chem. 444, 151–166 (1978).

	 43.	 N. Cornei, N. Tancret, F. Abraham, O. Mentré, New ϵ-Bi2O3 metastable polymorph. Inorg. 
Chem. 45, 4886–4888 (2006).

	 44.	 P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Oxide ion conducting solid 
electrolytes based on Bi2O3. Solid State Ionics 89, 179–196 (1996).

	 45.	 R. T. Bell, P. A. Beaucage, M. J. Murphy, A. B. Connolly, U. Wiesner, D. Ginley, R. B. Van Dover, 
M. O. Thompson, Rapid identification of synthetic routes to functional metastable phases 
using X-ray Probed Laser Anneal Mapping (XPLAM) time–temperature quench Maps. 
Chem. Mater. 33, 4328–4336 (2021).

	 46.	 V. Borisenko, P. Hesketh, Rapid Thermal Processing of Semiconductors (Springer, 1997).
	 47.	 D. R. Sutherland, A. B. Connolly, M. Amsler, M.-C. Chang, K. R. Gann, V. Gupta, S. Ament, 

D. Guevarra, J. M. Gregoire, C. P. Gomes, R. Bruce van Dover, M. O. Thompson, Optical 
identification of materials transformations in oxide thin films. ACS Comb. Sci. 22, 887–894 
(2020).

	 48.	 S. Thienhaus, D. Naujoks, J. Pfetzing-Micklich, D. König, A. Ludwig, Rapid identification 
of areas of interest in thin film materials libraries by combining electrical, optical, x-ray 
diffraction, and mechanical high-throughput measurements: A case study for the system 
Ni–Al. ACS Comb. Sci. 16, 686–694 (2014).

	 49.	 H. Wang, S. Xiang, On the convergence rates of Legendre approximation. Math. Comput. 
81, 861 (2012).

	 50.	 O. Madelung, U. Rössler, M. Schulz, Eds., SpringerMaterials. Bismuth oxide (Bi2O3) crystal 
structure, chemical bond, lattice parameters. Landolt-Börnstein - Group III Condensed 
Matter 41C (Non-Tetrahedrally Bonded Elements and Binary Compounds I).

	 51.	 A. Evans, A. Bieberle-Hütter, J. L. Rupp, L. J. Gauckler, Review on microfabricated 
micro-solid oxide fuel cell membranes. J. Power Sources 194, 119–129 (2009).

	 52.	 M. Tsuchiya, B.-K. Lai, S. Ramanathan, Scalable nanostructured membranes for solid-
oxide fuel cells. Nat. Nanotech. 6, 282–286 (2011).

	 53.	 Raw microscope images and reflectance data for the lg-LSA annealed Bi2O3 thin film; 
https://doi.org/10.7298/h63q-9r54.

	 54.	 Software to process the microscope images and reflectance data, and to perform the GP 
based active learning; https://github.com/gomes-lab/SARA_ScienceAdvances.

	 55.	 G. Ashiotis, A. Deschildre, Z. Nawaz, J. P. Wright, D. Karkoulis, F. E. Picca, J. Kieffer, The fast 
azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).

	 56.	 C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive 
Computation and Machine Learning) (MIT Press, 2005).

	 57.	 J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A fresh approach to numerical 
computing. SIAM Rev. 59, 65–98 (2017).

	 58.	 D. A. Cohn, Z. Ghahramani, M. I. Jordan, Active learning with statistical models. J. Artif. 
Intell. Res. 4, 129–145 (1996).

	 59.	 M. Titsias, Variational learning of inducing variables in sparse Gaussian processes, in 
Artificial Intelligence and Statistics (PMLR, 2009), pp. 567–574.

	 60.	 M. Lázaro-Gredilla, M. K. Titsias, Variational heteroscedastic Gaussian process regression, 
in Proceedings of the 28th International Conference on International Conference on Machine 
Learning ICML'11 (ACM, 2011), 841–848.

	 61.	 R. M. Neal, Monte Carlo implementation of Gaussian process models for Bayesian 
regression and classification. arXiv:physics/9701026 [physics.data-an] (28 January 1997).

	 62.	 Q. V. Le, A. J. Smola, S. Canu, Heteroscedastic Gaussian process regression, in Proceedings 
of the 22nd International Conference on Machine Learning (ACM, 2005), pp. 489–496.

	 63.	 K. Kersting, C. Plagemann, P. Pfaff, W. Burgard, Most likely heteroscedastic Gaussian 
process regression, in Proceedings of the 24th International Conference on Machine 
Learning (ACM, 2007), pp. 393–400.

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 15, 2022

http://dx.doi.org/10.7298/h63q-9r54
https://github.com/gomes-lab/SARA_ScienceAdvances
https://arxiv.org/abs/physics/9701026


Ament et al., Sci. Adv. 7, eabg4930 (2021)     17 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 12

	 64.	 P. Dallaire, C. Besse, B. Chaib-Draa, Learning Gaussian process models from uncertain 
data, in International Conference on Neural Information Processing (Springer, 2009), 
pp. 433–440.

	 65.	 E. Snelson, Z. Ghahramani, Variable noise and dimensionality reduction for sparse 
Gaussian processes. arXiv:1206.6873 [cs.LG] (27 June 2012).

	 66.	 A. McHutchon, C. Rasmussen, Gaussian process training with input noise, in Advances in 
Neural Information Processing Systems, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, 
K. Q. Weinberger, Eds. (Curran Associates Inc., 2011), vol. 24, pp. 1341–1349.

	 67.	 M. A. Álvarez, L. Rosasco, N. D. Lawrence, Kernels for vector-valued functions: A review. 
Found. Trends Mach. Learn. 4, 195–266 (2012).

	 68.	 E. Solak, R. Murray-Smith, W. Leithead, D. Leith, C. Rasmussen, Derivative observations 
in Gaussian process models of dynamic systems. Adv. Neural Inf. Proces. Syst. 15, 
1057–1064 (2002).

	 69.	 J. Tellinghuisen, Statistical error propagation. Chem. Eur. J. 105, 3917–3921 (2001).
	 70.	 B. Hu, J. Shao, M. Palta, Pseudo-r 2 in logistic regression model. Stat. Sin. 16, 847–860 

(2006).
	 71.	 T. J. Smith, C. M. McKenna, A comparison of logistic regression pseudo R2 indices. MLRV 

39, 17–26 (2013).
	 72.	 G. A. Hemmert, L. M. Schons, J. Wieseke, H. Schimmelpfennig, Log-likelihood-based 

Pseudo-R2in logistic Regression. Sociol. Methods Res. 47, 507–531 (2018).
	 73.	 G. Gattow, D. Schütze, Über Wismutoxide. VI. Überein Wismut (III)-oxid mit höherem 

Sauerstoffgehalt (-Modifikation). Z. Anorg. Allg. Chem. 328, 44–68 (1964).
	 74.	 S. Hull, S. T. Norberg, M. G. Tucker, S. G. Eriksson, C. E. Mohn, S. Stølen, Neutron total 

scattering study of the  and  phases of Bi2O3. Dalton Trans. 2009, 8737–8745 (2009).

Acknowledgments 
Funding: We acknowledge the Air Force Office of Scientific Research for support under award 
FA9550-18-1-0136. This work is based on research conducted at the Materials Solutions 
Network at CHESS (MSN-C), which is supported by the Air Force Research Laboratory under 
award FA8650-19-2-5220, and the NSF Expeditions under award CCF-1522054. This work was 
also performed, in part, at the Cornell NanoScale Facility, a member of the National 
Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the NSF (grant 
NNCI-2025233). M.A. acknowledges support from the Swiss National Science Foundation 
(project P4P4P2-180669). This research was conducted with support from the Cornell 
University Center for Advanced Computing. Author contributions: R.B.v.D., C.P.G., M.O.T., and 
J.M.G. conceived and supervised the research. S.A. and M.A. developed and implemented the 
SARA algorithms and contributed equally to this work. M.A. and S.A. took the lead in writing 
the manuscript. D.R.S. fabricated the Bi2O3 thin-film samples and collected and analyzed the 
optical microscopy and reflectance data. A.B.C. performed the lg-LSA experiments. D.G. and 
J.M.G. processed the XRD data, and D.R.S. and M.-C.C. helped analyze the results. All authors 
provided critical feedback and helped shape the research, analysis, and manuscript. 
Competing interests: The authors declare that they have no competing interests. Data and 
materials availability: All data needed to evaluate the conclusions in the paper are present in 
the paper and/or the Supplementary Materials (53, 54).

Submitted 19 January 2021
Accepted 29 October 2021
Published 17 December 2021
10.1126/sciadv.abg4930

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 15, 2022

https://arxiv.org/abs/1206.6873


Use of this article is subject to the Terms of service

Science Advances (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Autonomous materials synthesis via hierarchical active learning of nonequilibrium
phase diagrams
Sebastian AmentMaximilian AmslerDuncan R. SutherlandMing-Chiang ChangDan GuevarraAine B. ConnollyJohn M.
GregoireMichael O. ThompsonCarla P. GomesR. Bruce van Dover

Sci. Adv., 7 (51), eabg4930. • DOI: 10.1126/sciadv.abg4930

View the article online
https://www.science.org/doi/10.1126/sciadv.abg4930
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on M
ay 15, 2022

https://www.science.org/about/terms-service

