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Multi-component background learning automates signal
detection for spectroscopic data
Sebastian E. Ament1, Helge S. Stein2, Dan Guevarra2, Lan Zhou2, Joel A. Haber2, David A. Boyd2, Mitsutaro Umehara 2,3,
John M. Gregoire 2 and Carla P. Gomes1

Automated experimentation has yielded data acquisition rates that supersede human processing capabilities. Artificial Intelligence
offers new possibilities for automating data interpretation to generate large, high-quality datasets. Background subtraction is a
long-standing challenge, particularly in settings where multiple sources of the background signal coexist, and automatic extraction
of signals of interest from measured signals accelerates data interpretation. Herein, we present an unsupervised probabilistic
learning approach that analyzes large data collections to identify multiple background sources and establish the probability that
any given data point contains a signal of interest. The approach is demonstrated on X-ray diffraction and Raman spectroscopy data
and is suitable to any type of data where the signal of interest is a positive addition to the background signals. While the model can
incorporate prior knowledge, it does not require knowledge of the signals since the shapes of the background signals, the noise
levels, and the signal of interest are simultaneously learned via a probabilistic matrix factorization framework. Automated
identification of interpretable signals by unsupervised probabilistic learning avoids the injection of human bias and expedites signal
extraction in large datasets, a transformative capability with many applications in the physical sciences and beyond.
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INTRODUCTION
Data analysis and interpretation are pervasive in physical sciences
research and typically involve information extraction from noisy
and background-containing signals.1–3 Examples from materials
science include the identification of crystal structures from X-ray
diffraction patterns4 and chemical species from X-ray photoelec-
tron spectra.5 Distinguishing the signal of interest from back-
ground signals comprises a major hurdle, and any errors in making
these distinctions can alter data interpretation.6,7 The identifica-
tion of the signal of interest often requires expert knowledge8,9

and/or application of empirical algorithms, motivating the
establishment of a more principled approach.
An example of principled background removal in physical

sciences concerns the Bremsstrahlung radiation observed in
energy-dispersive X-ray spectroscopy (EDS),10,11 which provides
an ideal situation for background identification because there is a
single primary background source whose shape can be derived
from fundamental physics.10–13 On the other hand, measurements
such as X-ray diffraction (XRD) typically involve a variety of
background sources. The background sources of measured X-ray
intensities can include scattering by air, elastic scattering by the
sample, and scattering by the substrate or sample support, which
appear in the detector signal in combination with the desired
inelastic scattering from the sample of interest. Furthermore, a
given background signal may be attenuated differently over a set
of measurements, but it always provides a non-zero contribution
to the measured signal. Since the level of these different
background signals can vary independently, it is not possible to
identify a single characteristic background pattern, motivating the

establishment of a multi-component model. Raman spectroscopy
similarly involves a variety of background sources. Herein, XRD
and Raman data are used as specific examples in which the
measured signal is the combination of positive intensities
including the signal of interest and any number of background
signals.
Empirical background subtraction models6,7,14,15 typically

require manual fine tuning of parameters. For example, the XRD
background subtraction algorithm from Sonneveld and Visser6

requires parameters for the smoothness of the data and the
magnitude of the intensity gradients for peaks of interest. Though
the algorithm can be implemented effectively, as reflected by its
incorporation into several commercial software packages for XRD
analysis, users still need to fine-tune the parameters to avoid
distortion of the peaks of interest and overestimation of the
background signal.
Further, as is shown in the current work, there are complex

background signals which defy approaches based on fitting a
background model to a single spectrogram at a time. More
recently, background identification through analysis of a collection
of measurements has been performed using methods such as
principal component analysis (PCA)16 or polynomial fitting,15

which still require expert knowledge in discriminating background
from signal and do not guarantee non-negativity of the extracted
signal.
We introduce Multi-Component Background Learning (MCBL), a

fundamentally new approach to background subtraction and
signal identification. MCBL leverages the power of big data by
inferring background and signals of interest from an entire dataset
of spectrograms. Second, MCBL’s inference task is enabled by a
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novel probabilistic generative model of the spectroscopic data
where the background components, the noise variance, and the
level of spectroscopic activity are all concomitantly learned from
the data. The comprehensiveness of the learning model is key for
achieving autonomous interpretation of spectroscopic data, a goal
of increasing practical importance for emerging technologies such
as materials acceleration platforms.3 Third, MCBL provides the
probability that any given data point contains a (non-background)
signal of interest. This probability is automatically inferred by the
algorithm based on its unified probabilistic framework, and does
not rely on human parameter estimates.
Furthermore, the MCBL model is flexible enough to incorporate

prior knowledge of different types of background sources.
For example, a common assumption is the smoothness of the

background signals, which the algorithm can incorporate by
enforcing a user-defined smoothness constraint. Note however,
that the algorithm is less sensitive to these types of human inputs
than other algorithms, especially when the algorithm is given a
large number of spectrograms. Providing prior knowledge is
especially important in challenging cases where there are many
complex background signals and data are scarce. Last, the MCBL
algorithm requires a noise model. We describe its principled
design for XRD and Raman data, as well as the physical meaning
of each parameter, in the Methods section. In addition, the noise
model’s parameters are not required to be chosen manually but
can be learned from the data.
MCBL is demonstrated using large datasets from two common

techniques in materials characterization: XRD and Raman spectro-
scopy. In both cases, the data were acquired using composition
libraries that were synthesized to measure and identify
composition-structure-property relationships,17 a central tenet of
combinatorial materials science.18 Automated inference of the
crystal structures from XRD or Raman characterization of the
composition library, i.e. “Phase Mapping”, is a long-standing
bottleneck in materials discovery.8 Phase Mapping algorithms
have been plagued by both insufficient background removal and
incorrect labeling of signals of interest as background or noise.
Unsupervised, principled background removal circumvents these
issues to increase both the speed and the quality of data
interpretation.

RESULTS
X-ray diffraction
To demonstrate the performance of MCBL and illustrate some of
the more subtle aspects of the model and its deployment, we
apply it to a particularly challenging XRD example in which there
are multiple background sources, including a background source
whose intensity is substantially higher than the signal of interest.
In this case, the strong background signal is from diffraction of the
SnO2 in the substrate, introducing unwanted peaks into the
dataset that are quite similar in shape to those in the desired
signal from the thin film sample. Furthermore, over a series of 186
reflection-geometry measurements on different thin film compo-
sitions, the variable density and thickness of the thin film of
interest alters the shape and intensity of the substrate signal.
Provided that the set of 186 samples contains more variability in
the signal of interest than the background signal, which it does
due to the variety of crystal structures in the 186 unique
compositions, MCBL identifies the unique combination of back-
ground signals for each of the 186 measured diffraction patterns.
Note that we have prior knowledge that there are two distinct
types of background sources: diffraction signals from the crystal-
line substrate and smoothly varying signals from other sources
including elastic scattering and air scattering. We inject this
knowledge into the model by allowing one type of background
component to have intensity only in the vicinity of known

substrate diffraction peaks (scattering vector magnitudes
18.5–19.2, 23.6–24.1, and 26.2–26.8 nm−1), while the other type
of background component is enforced to be smoothly varying.
As shown in Fig. 1, the MCBL model identifies the background

signal, enabling retention of the desired signal even when the
Bragg peak from the sample strongly overlaps that of the
substrate. The recovery of the desired signal from the shoulder
of the much more intense background signal, as exemplified by
the peak near 23 nm−1 in Fig. 1b, is uniquely enabled by the
model’s ability to learn the background signal from the collection
of measurements. It is also worth noting that the background
models in these 2 examples are different in slight but important
ways because the total background signal is unique to each
measurement, which is illustrated further in the Raman example
below.

Raman spectroscopy
Continued demonstration of MCBL proceeds with a Raman
spectroscopy dataset where 2121 metal oxide samples spanning
15 pseudo-quaternary metal oxide composition spaces (5
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Fig. 1 Two representative samples from the 186 XRD measurements
that were collectively used to establish the multi-component
background. Each measured signal is shown along with the inferred
background, which contains 3 diffraction peaks from the substrate
that are much larger in intensity than those of the sample of
interest. This measurement-specific inferred background produces a
net signal that intentionally retains the measurement noise so that
the signal from each sample of interest can be interpreted in the
context of the measurement noise. In a. a series of relatively small
peaks are recovered from the background-dominated signal. In b.
similar signal recovery is obtained even when peaks of interest
strongly overlap with peaks in the background signal
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elements including oxygen but systematic variation of the
concentrations of only the 4 metals yields dimensionality of a
quaternary composition space) were measured using a rapid
Raman scanning technique described previously.19 Similar to the
XRD dataset, the Raman signal from the substrate varies in
intensity with sample composition, and the high sensitivity of
Raman detectors to environmental factors such as room
temperature introduces additional variability in background
signal. Data acquisition proceeded over a week, during which
time-dependent variation in signal levels were observed. These
occur, for example, due to day to night temperature variation in
the laboratory. While we expect the background to be smooth, a
closed mathematical expression is not available, making this
dataset well matched to the capabilities of the MCBL model. As
discussed in the Methods section, limiting each of the background
signals to be smooth makes the results relatively insensitive to the
number of background sources included in the model, provided
this number is at least as large as the true number of background
sources. Since we expect that several sources may be present, 16
is a convenient upper bound and is a standard value to use for
datasets where more specific knowledge of the background
sources is unavailable.
Since peak shapes, in particular peak widths, are more variable

in Raman measurements compared to XRD measurements, and
the intensity of the Raman signal of interest is often comparable to
the measurement noise, even background—Raman signals are
not readily interpretable without additional information. MCBL

provides such additional information, in particular the probability
that each individual data point contains signal from the sample,
i.e., intensity that is not explainable by the background and noise
models. For each measured signal, the algorithm produces a
probability signal that can be used to reason about the data in
subsequent analysis. Since single-point outliers in the measured
signals can cause single point outliers in the probablity signal,
MCBL factors in the prior knowledge that any Raman feature of
interest will span several data points by smoothing the probability
signal via kernel regression20 with a Gaussian kernel of (σ) three
data points. Thresholding the smoothed probability signals at 50%
provides identification of each data point that likely contains
signal from sample of interest.
Representative examples of background identification and

removal are shown for three Raman measurements in Fig. 2a–c.
Using MCBL with 16 background components yields background-
subtracted signals with a flat, near-zero baseline atop which the
small signal peaks are far more evident than in the raw data. Since
each net signal contains measurement noise, the visual identifica-
tion of peaks can be assessed in the context of this noise. The
results of the probability signal analysis are shown with
demarcation of each data point that likely contains signal from
the substrate. It is worth noting that researchers often apply
smoothing to assist in identification of such small peaks in the
signal, although the propensity for modification of the true signal
and possibilities for both false positive and false negative peak
detection highlights the benefits of the identifying the

Sonn.Viss.

In
te

n
si

ty
 (

cp
s)

In
te

n
si

ty
 (

cp
s)

In
te

n
si

ty
 (

cp
s)

In
te

n
si

ty
 (

cp
s)

.b.a

c. d.

measured and
background signals

net signal

Fig. 2 Three samples (a–c) from the 2121 Raman measurements representing measurements with weak signals from the sample of interest.
Each measured signal is shown along with the inferred background using both 1 background component and 16 background components
(rank). The net signals from these 2 background models are also shown at the bottom of each figure, and the data points that are determined
by the probablistic model to likely contain signal from the sample are denoted by green stars in both the raw measurement and the net signal
from the rank 16 background model. The measurement of c. is also shown in d. where a traditional polynomial background analysis is
performed (see ref. 15 for details) using both 16 and 64-degree polynomials as well the Sonneveld and Visser algorithm.6 The resulting net
signals at the bottom of the figure fail to reflect the signal from the sample
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background signal using a probabilistic model that considers both
the noise and the signal from the sample.
Figure 2a includes examples of peaks from the sample that are

notoriously difficult to identify. The peak near 480 cm−1 appears
atop of a larger peak in the background signal, and the peak near
510 cm−1 lies on a strongly sloped portion of the background
signal. The intensity at the right edge of the measured signal in
Fig. 2a is increasing, so inspecting this individual pattern could not
definitively identify that portion of the signal as being absent or
inclusive of signal from the sample. The probabilistic model makes
this assessment, where no signal from the sample is identified in
this portion of Fig. 2a. A sample peak is detected in the analogous
portion of the measurement in Fig. 2b where the partial
measurement of the peak atop a sloped background would be
problematic for any peak fitting (regression)-based search for
sample peaks. Figure 2b also demonstrates the importance of the
multi-component aspect of the background model. While the
background signal is qualitatively similar to the other samples, the
quantitative differences that are emblematic of the unique
mixture of the background sources render the single-
component model unable to provide a clean background-
subtracted signal. The model’s detection of two peaks in the
measured signal of Fig. 2c (near 480 and 680 cm−1) is particularly
impressive as even expert manual analysis may hesitate to label
these features as sample peaks due to the poor signal-to-noise
ratio. Their detection in the probabilistic model is aided by the
appearance of the peaks in other measurements, including that of
Fig. 2a.
To highlight the quality of the net signals produced by the

MCBL model, the measurement of Fig. 2c is shown in Fig. 2d along
with traditional polynomial baseline modeling. The lower-order
polynomial yields a net signal where the largest peak is actually
from a background source, and increasing the polynomial order to
capture this feature in the background model results in removal of
practically all signal from the sample.
To further illustrate the background removal and peak

identification process, Fig. 3 includes a series of ten of the Raman
measurements with a variety of peak locations, shapes, and
relationships to the background signal. Since the signal probability
is calculated for every data point, the probability signals can be
plotted in the same manner as the measured signals, as shown in
Fig. 3b. The background-subtracted samples in Fig. 3c are shown
with partial transparency where the probability signal is below the
50% threshold so that the regions of each pattern that likely
contain signal from the sample are highlighted. The sharp, intense
peaks in the top two patterns may be easily identified by a variety
of algorithms, although identification of many of the broader,
weaker features from each sample require the excellent

background identification and probabilistic reasoning of the
MCBL model.

Probabilistic classification of sample signal and enumeration of
background sources
Figure 2b also illustrates a subtle consequence of the model’s
collective learning of the background signals, measurement noise,
and probabilities via the probabilistic framework. The rank 16
model identifies the appropriate background and consequently
correctly learns the measurement noise to identify three small
peaks between 220 and 420 cm−1. The rank 1 background model
is imperfect, and the collection of samples with incorrect
background signals inflates the model’s estimation of the noise
level such that the resulting probability signals do not identify any
of these three peaks as likely containing signal from the sample.
The comprehensive probabilistic framework enables simultaneous
learning of multiple properties of the measured signals, but using
a background rank smaller than the true number of background
sources is deleterious not only to background removal but also to
automated detection of signals of interest.
The classification of measured signals as lacking or containing a

signal of interest has a variety of applications ranging from
materials discovery to characterization of the background sources.
Using the rank 16 background model, 743 of the 2121 measured
signals contain at least one datapoint that is likely to contain
signal of interest. Using this as the baseline classification of
absence or presence of signal from the sample, the performance
of lower-rank models can be assessed via the recall (the fraction of
the 743 patterns with signal that are correctly identified as having
signal) and the precision (the fraction of signals with detected
signal that actually have signal). The results are summarized in Fig.
4a and demonstrate the poor performance of the rank 1 model for
this classification task, which is due to a confluence of phenomena
including that noted above; non-removed background signal can
be interpreted as signal of interest (false positive), and the inflated
noise level in the noise model can fail to identify small signals of
interest (false negative). Increasing to rank 2 greatly improves the
recall but not the precision, and increasing to rank 4 largely
removes the disparity between recall and precision. Since there is
no substantial change upon increasing to rank 8, these results
collectively indicate that the number of background sources is
three or four. It is worth noting that multiple components are
needed to model a single background source if its signal varies in
shape over the dataset, so this interpretation of rank as determine
the number of sources includes the number of unique physical
phenomena that alter the shape of a background signal. The
background sources can be further characterized using the wealth

a. b. c.

Fig. 3 Stack plots containing 10 measurements from the set of 2121 measured Raman signals, chosen based on variation in observed Raman
signal from the sample. The measured signals in a. were analyzed collectively with the full dataset to derive a comprehensive background
model, including the probability signals indicating the likelihood that each data point contains signal from the sample (b), and the
background-subtracted signals (c). These latter signals contain the modeled signal from the sample, as well as measured noise, and the
opaque data points are those whose probability signal is above the 0.5 threshold, providing the user a clear visualization of the signals of
interest
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of information provided by the MCBL model, such as the spatial or
temporal variation in the intensity of each background source.
Figure 4b includes a similar analysis for how the background-

subtracted signals vary with rank. Once again using the rank 16
results as the baseline for comparison, the difference of each
background-subtracted signal is measured using both the ‘1 and
root mean squared (RMS) loss. The average per-signal loss appears
to follow a power law relationship with the model rank. Each
pattern contains 1023 data points, so starting at rank 4 the ‘1
value per data point is about 1 CPS or lower, and comparison to
the signals in Fig. 2 demonstrate that this is within the
measurement noise, in agreement with the above observation
that rank 3 or 4 is sufficient to model the background in this
dataset. Using a larger rank has no substantial influence on the
resulting signals of interest. This stability in the model’s solution is
an important feature for unsupervised deployment.

DISCUSSION
The results above demonstrate not only successful background
removal but also the generation of insightful probabilistic models
for both XRD and Raman data. While background removal is often
considered a non-scientific aspect of data interpretation, consider
instead the concept that the scientific merit of a chain of analyses
is only as strong as its weakest link. Artifacts injected from non-
principled background subtraction are inherited by subsequent
analyses and can contaminate the scientific interpretation of the
data. In general, any modification to measured data should be
performed in a manner that reflects a fundamental understanding
of the underlying physical processes that give rise to the
measured signals. In the present work, this understanding is
incorporated with specificity through the establishment of a
probability density model for the signal of interest, yet through its
parameterization the model retains generality for any measure-
ments involving addition of non-negative sources. A desirable

consequence of this principled parameterization of the back-
ground model is that the learned parameters provide statistical
characterizations of the data, which was demonstrated with
analysis of the probability signals and the identification of the
number of background sources in the Raman dataset. While not
discussed in the present work, after identification of the number
of background sources, the individual background signals can be
analyzed to study the background sources themselves, and the
activations of each of these sources in a dataset enables
quantification of the variability in each background source’s
intensity. While one goal of the algorithm is the generation of
background-free signals, these examples illustrate the broader
application of the probabilistic learning approach, that the
optimized probabilistic model contains deep information about
every component of the measured signal.
A principled approach to the identification, removal and

statistical evaluation of background signals is established for any
measurement type where each measured signal is a combination
of non-negative contributions from multiple sources. Through
design of a parameterized probability density function for the
measured intensities of a signal of interest, a probabilistic
framework is established for unsupervised learning of background
signals, in particular when there are multiple sources of back-
ground whose contributions to the measured signal vary among
the set of measurements. In addition to unsupervised operation,
the model provides a variety of methods for incorporating prior
knowledge, which is demonstrated with an example XRD dataset
in which the crystalline substrate produces more intense
diffraction patterns than the sample of interest. The probability
signals, which indicate where the signal of interest is likely
present, are demonstrated using a Raman dataset in which the ~4
background sources are identified and modeled for each
measurement, providing signals for further analysis that contain
negligible contributions from the background. The probability
signals and other parameters can be employed by subsequent
reasoning and learning algorithms, making the algorithm a
foundational advancement in the automation of data
interpretation.

METHODS
MCBL model
In a dataset with N signals that were measured on a variety of samples,
each signal Si is modeled as the sum of the signal Pi from the sample,
which typically involves a series of peaks, and the total background signal
Bi. For each data point j in measurement i,

Si;j ¼ Pi;j þ Bi;j : (1)

Since in general Bi is composed of a unique mixture of K background
signals, the background patterns and sample-specific weights are
determined using a matrix factorization (MF) approach. The MF construc-
tion of the background model involves the matrix V, containing the
collection of K signals from the background sources, and the matrix U,
containing the amount of each background signal in each measured
signal. The matrix product UV is thus the collection of total background
signals for each measurement: B ≈ UV. To create a model that does not
require measurement of each background signal, which is typically not
possible, the matrices U and V are learned from the measured spectra by
considering the MF problem

S � UV : (2)

In traditional implementations of matrix factorization, the residuals of
the model, R= S− UV, are minimized with respect to ‘2 or similar loss
metric. However, given that UV is the background model, R contains P, the
signals of interest. In spectroscopic data, P is positive and can be large.
Critically, large deviations are penalized heavily by traditional loss
functions like ‘2. Therefore, this problem requires a novel approach to
solving the matrix factorization problem, which allows for large deviations
from the background model UV where signals of interest are present. If the
signal of interest includes a peak (non-background signal) at the jth data

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

01 1

Rank 1 Rank 2 Rank 4 Rank 8

P
recision

R
ec

al
l

Fraction of patterns with signal

a.

b.

Fig. 4 Background model results for rank 1, 2, 4, and 8 (the number
of background sources in the model) are compared to the results
from rank 16. In a, the probabilistic model is used to classify each
measured signal as lacking or having signal from the sample, and
the recall and precision of the lower rank models for this
classification is shown with a series of histograms all plotted on
the same scale. In b, each background-subtracted signal is
compared to that of the rank 16 model, producing the average L1
and RMS loss per measured signal
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point in measurement i, then Ri,j will be large and positive. While Ri,j should
be near zero for data points containing only background signal, the
measurements S and thus the residuals R contain measurement noise. As a
result, the distribution of Ri,j values will be different when the signal of
interest is absent or present. When absent, the measurement noise is
typically well modeled by a Gaussian distribution, N μ;σ . When present, the
large residual intensities (peaks) are modeled by an exponential
distribution, which when combined with the Gaussian distribution for
noise yields the exponentially modified Gaussian (EMG) distribution:

EMGμ;σ;λðRijÞ ¼ λ

2
e
λ
2ð2μþλσ2�2RijÞ erfc

μþ λσ2 � Rij
ffiffiffi

2
p

σ

� �

; (3)

where erfc is the complementary error function, λ is the rate parameter of
the exponential random variable, and μ and σ are the location and scale
parameters of the Gaussian random variable, respectively. This distribution
was previously used in biology,21 psychology,22 and finance.23 Further-
more, the values λ, μ, and σ can vary along the measurement axis to
increase the flexibility of the model, if required. In the present work we
consider only a single σ and λ for a given dataset and fix the mean μ of the
Gaussian noise to zero.
Since N μ;σ and the EMG distribution of Eq. (3) describe the distribution

of residual intensities when the signal of interest is absent and present,
respectively, a general expression for the distribution of residual intensities
is their mixture:

EMGMμ;σ;λ;Zij ðRijÞ :¼ ð1� ZijÞN μ;σðRijÞ þ Zij EMGμ;σ;λðRijÞ; (4)

where Zij indicates whether signal of interest is absent (Zij= 0) or present
(Zij= 1) in the residual Rij. Optimization of the matrix factorization model
Eq. (2) corresponds to finding the background patterns, weights and
distribution parameters such that the likelihood, corresponding to the
product of Eq. (4) for all data points, is maximized. This enables U, V, Z, λ, μ,
and σ to be learned concomitantly. A standard procedure in machine
learning is to regularize optimization problems to make them well posed.
In particular, to encourage the algorithm to find solutions with a small
noise variance, we added a half normal prior on σ to regularize the
optimization with respect to the parameter. The prior distribution has a
variance σ20 which can be used to control the strength of the regularization.
This is necessary for the XRD dataset, since it does not include any
substrate measurements. Therefore, we used σ20 ¼ 0:01 for the XRD
dataset. Because the exact optimization of the binary variables Zi,j is
computationally intractable, we employ an expectation-maximization
algorithm.24,25 Instead of inferring Zi,j directly, the algorithm computes
the expected value EðZijÞ, which is a continuous variable in the interval
[0, 1]. From the equality

E½Zij � ¼ PðZij ¼ 1Þ; (5)

we also obtain the probability that the measured data point Si,j contains
non-background signal. The algorithm for solving this implementation of
probabilistic matrix factorization is described in ref. 26.
This approach to background identification enables unsupervised

learning of the background model after choosing the value of a single
parameter, the rank K of V, which corresponds to the number of
background sources. While unsupervised methods for determining an
appropriate value of K can be deployed,27 we instead further constrain the
matrix factorization model such that the results are relatively insensitive to
K. This enables users to choose an upper bound for K and retain
unsupervised operation. The constraints to the matrix factorization also
enable semi-supervised operation, which enables both injection of prior
knowledge of the background sources and deployment in data-starved
situations where there are not enough examples of the background signals
for the unsupervised model to robustly learn them. The constraints are
implemented by defining kernel functions for each component of V. The
most commonly used kernel is the squared exponential (SE) kernel, which
enforces smoothness of each background signal. For example, the
background model for the Raman data was obtained by using the SE
kernel for all background components. Further, if the underlying physics of
a given background signal give rise to a functional form or another
physics-based constraint, this too can be used to constrain components in
V. In fact, for the XRD dataset, the SE kernel was only used for two
background signals. The other two background signals were constrained
based on prior knowledge of the background signal from the crystalline
substrate; the intensity of these background signals was constrained to
zero except for the regions indicated above in the X-ray diffraction section.
This is done with a simple projection: All values outside of the allowed
ranges are set to zero in every gradient step of the optimization algorithm.

Despite there only being one crystalline substrate, we used two vectors to
express its signature to accommodate for any variations in this background
signal over the set of measurements.

Library synthesis
The pseudo-ternary metal oxide composition gradient was fabricated
using reactive direct current magnetron co-sputtering of Cu, Ca, and V
metal targets in a non-confocal geometry onto a 100mm diameter ×
2.2 mm thick soda lime glass substrate with FTO coating (Tec15, Hartford
Glass Company) in a sputter deposition system (Kurt J. Lesker, PVD75) at
10−5 Pa base pressure. The partial pressures of the deposition atmosphere
containing inert sputtering gas Ar and reactive gas O2 were 0.072 Pa and
0.008 Pa respectively. Deposition proceeded without active substrate
heating, with the source powers set to 150W, 11W, and 95W for the V,
Cu, and Ca sources respectively. Deposition time per source was varied in
order to achieve a total film thickness of 200 nm. The as-deposited
composition library was annealed in a Thermo Scientific box oven in
flowing air, with a 2 h ramp and 3 h soak at 550 °C, followed by passive
cooling.
The 2121 samples forming the 15 pseudo-quaternary space composition

library were deposited via inkjet printing onto 100 × 150 × 1.0 mm fluorine-
doped tin oxide (FTO) coated boro-aluminosilicate glass (Corning Eagle XG
Glass). The array of samples containing Mn, Fe, Ni, Cu, Co, and Zn was
synthesized as a discrete library with 10 atom% composition steps in each
element, using a print resolution of 2880 × 1440 dpi, as described
previously.28 Elemental precursor inks were prepared by mixing
3.33mmoles of each metal precursor with 20mL of stock solution. The
stock solution of 500mL 200 proof ethanol (Koptec), 16 mL glacial acetic
acid (T.J. Baker, Inc.), 8 mL concentrated HNO3 (EMD), and 13 g Pluronic
F127 (Aldrich) was prepared beforehand. The metal precursors Mn(NO3)2
4⋅H2O (0.88 g, 99.8%, Alfa Aesar), Fe(NO3)3 9⋅H2O (1.43 g, 99.95%, Sigma
Aldrich), Co(NO3)2 6⋅H2O (0.93 g, 98%, Sigma Aldrich), Ni(NO3)2 6⋅H2O
(1.09 g, 98.5%, Sigma Aldrich), Cu(NO3)2 3⋅H2O (0.83 g 99–104%, Sigma
Aldrich), and Zn(NO3)2 6⋅H2O (1.00 g 98%, Sigma Aldrich) were used as-
received from the distributor. After inkjet printing, the inks were dried and
converted to metal oxides by calcination in 0.395 atmO2 at 450 °C for 10 h,
followed by 0.395 atmO2 at 750 °C for 10 h.

X-ray diffraction
XRD was performed on the pseudo-ternary metal oxide composition
gradient using a Bruker DISCOVER D8 diffractometer, with a Bruker IμS
source emitting Cu Kα radiation. Using a 0.5 mm collimator, the
measurement area was approximately 0.5 mm× 1mm. Within this
measurement area the composition is uniform to with about 1 at.%.
Measurements were taken on an array of 186 evenly spaced positions
across the continuous composition library. Two-dimensional diffraction
images taken by the VÅNTEC-500 detector were integrated into one-
dimensional patterns using DIFFRAC.SUITETM EVA software.

Raman spectroscopy
The 15 pseudo-quaternary composition space metal oxide sample library,
was characterized using a Renishaw inVia Reflex Micro Raman spectro-
meter with Wire 4.1 software as described previously.19 The instrument’s
laser wavelength was 532 nm, and the diffraction grating resolution 2400
lines mm−1 (visible). Spectra were taken over the range 67–1339.9 cm−1

using a ×20 objective. The Renishaw StreamlineTM mapping system was
used to automate spectral image collection in which a cylindrical lens-
expanded 26 × 2 μm laser line was rastered over the measurement area.
Spectra were acquired at 65 μm spatial resolution and 0.75 s
exposure time.

DATA AVAILABILITY
The datasets analyzed during the current study are available in the Caltech Data
repository: XRD at https://doi.org/10.22002/D1.1178, https://data.caltech.edu/records/
1178 and Raman at https://doi.org/10.22002/D1.1179, https://data.caltech.edu/
records/1179.
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The codes pertaining to the current study will be available at http://www.cs.cornell.
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